
Demand-Driven Mixture Preparation and Droplet Streaming
using Digital Microfluidic Biochips

Sudip Roy1, Srijan Kumar1, Partha P. Chakrabarti1,
Bhargab B. Bhattacharya2 and Krishnendu Chakrabarty3

1Indian Institute of Technology Kharagpur, India. {sudipr, ppchak}@cse.iitkgp.ernet.in
2Indian Statistical Institute Kolkata, India. bhargab@isical.ac.in

3Duke University, Durham, USA. krish@ee.duke.edu

ABSTRACT
In many biochemical protocols, such as polymerase chain reaction,
a mixture of fluids in a certain ratio is repeatedly required, and
hence a sufficient quantity of the mixture must be supplied for as-
say completion. Existing sample-preparation algorithms based on
digital microfluidics (DMF) emit two target droplets in one pass,
and costly multiple passes are required to sustain the emission of
the mixture droplet. To alleviate this problem, we design a stream-
ing engine on a DMF biochip, which optimizes droplet emission
depending on the demand and available storage. Simulation results
show significant reduction in latency and reactant usage for mixture
preparation.

1. INTRODUCTION
Automatic mixture preparation, which is a basic preparatory step

in many biochemical laboratory protocols, refers to the task of pro-
ducing a desired ratio of concentration factors (CFs) of a set of
reactant fluids. In recent years, several techniques have been de-
veloped for sample preparation using digital microfluidics to en-
able biochemistry-on-a-chip [11, 16–18, 23–25]. These solutions
have opened up exciting new applications for electronic design au-
tomation in health-care and biomedical analysis. Existing dilution
and mixing algorithms used in digital microfluidic (DMF) biochips
construct a dilution or mixing tree that governs the mix-split se-
quence needed to produce at most one or two target droplets with a
desired ratio of CFs.

However, in many real-life applications, a target mixture may be
needed repeatedly for successful assay completion. For example,
an additional bioassay may be carried out using the same samples
or mixtures as confirmatory screening tests on patients in a point-
of-care environment. Moreover, an assay may be repeated to en-
sure higher confidence in the test results. For instance, in the poly-
merase chain reaction (PCR) used for DNA amplification, a master-
mixture of seven fluids (reactant buffer, dNTPs, forward primer, re-
verse primer, DNA template, optimase and water) is required with
a volumetric ratio {10%:8%:0.8%:0.8%:1%:1%:78.4%} [14]. The
resultant mixture is next used in several reactions, each requiring
a certain amount of master-mix as determined by the assay. In a
flow-based lab-on-a-chip, the supply can be met by maintaining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’14, June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

the flow for a desired time [9]. In digital microfluidics, the con-
ventional mixing algorithms [5, 11, 16–18, 20, 23–25] emit two
target droplets in one pass, and multiple passes are required to sus-
tain the emission of the desired mixture droplet. However, a draw-
back of this approach is the wastage of expensive reactants and the
excessive latency involved in sample preparation. Thus, in DMF
biochips, the emission of a multiplicity of target droplets remains as
an open problem, thereby highlighting a major drawback of known
sample-preparation algorithms.

Roy et al. [20] presented a dilution engine for producing multiple
droplets of a dilution sample. However, till date, no optimization
technique is known that produces a multiplicity of droplets of a
target mixture of three or more different fluids. We refer to the
problem of automatic emission of a stream of target droplets for a
mixture as Multiple Droplets of Single Target (MDST).

In this paper, we present two algorithms for implementing MDST
on a DMF biochip that can produce a stream of target droplets with
reduced mix-split operations and usage of input reactant fluids. We
use the term mixture-preparation engine to refer to a biochip that
implements MDST, i.e., which is capable of supplying multiple
droplets of a mixture M of N fluids with a given ratio, N ≥ 3. In or-
der to meet a given demand D (the required number of droplets) of
M, we introduce the concept of a mixing forest for executing the two
droplet generation algorithms proposed here. Given a number of
on-chip mixer modules, the algorithm M_Mixer_Schedule (MMS)
optimally schedules the mixing forest for implementing the mix-
ing engine. Another algorithm called Storage_Reduced_Schedule
(SRS), can be used to implement the engine when there is a con-
straint on on-chip storage availability. For validating the proposed
algorithms, we have simulated a droplet streaming engine to pro-
duce the PCR master-mixture along with scheduling, placement of
resources (mixers, reservoirs, storage units), and layout optimiza-
tion. Simulation results show that, on average, MMS can produce
multiple target droplets 72.5% faster and with 75% reduction in the
reactant usage compared to baseline approaches used earlier for
mixture preparation [16, 18, 24, 25].

The remainder of the paper is organized as follows. Section 2
describes related prior work and the problem formulation. The
scheduling schemes and design solutions for MDST are presented
in Section 4. Simulation results are provided in Section 6. Finally,
conclusions are drawn in Section 7.

2. RELATED PRIOR WORK

2.1 Mixing Algorithms
In the (1 : 1) mixing model, two unit-volume droplets are mixed

and then split to produce two unit-volume droplets; a mixing tree is
a binary tree representation of (1 : 1) mix-split steps that are nec-
essary to prepare a desired mixture from its constituent fluids on a
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DMF biochip [24].
Dilution is a special case of mixing of two input fluids (i.e.,

N = 2), one of which is a buffer solution (e.g., distilled water). Re-
cently, several dilution algorithms have been reported in [6, 11, 17,
19, 23, 24] to produce one/two droplet(s) of a single or multiple tar-
get concentration factors (CFs). In order to prepare a target mixture
M of N fluids with a given ratio of its constituents, where N ≥ 3,
any mixing algorithm [16, 18, 24, 25] can be used. In all these dilu-
tion/mixing algorithms, the (1 : 1) mix-split model is used, which
is suitable for DMF biochips. Also, a CF in the target ratio is ap-
proximated (by rounding-off) in a scale of 2d , where the ratio-sum
L = 2d . The integer d is user-defined and it determines the accu-
racy level of target CFs. By constructing a mixing tree of depth d,
these algorithms generate the target mixture with a maximum error
of 1

2d in CF in each of the constituent fluids.
Based on work published thus far, there are four known algo-

rithms that can be used for mixing N fluids, where, N ≥ 3 —
MM [24], RMA [18], RSM [25] and MTCS [16]. By “base mixing
tree/graph”, it is meant that the task graph on which the basic pro-
cedure (MM, RMA, RSM or MTCS) is run for producing the target
droplets. However, all earlier approaches for mixture preparation
can be used to produce at most two target droplets in one pass, and
hence, they are unsuitable for droplet streaming, i.e., when multiple
droplets of a desired mixture are needed.

The earlier work on dilution (N = 2) or mixing (N ≥ 3) can
be classified based on the following objectives of producing a tar-
get droplet: (a) SDST: single droplet of a single target ratio; (b)
MDST: multiple (more than two) droplet(s) of a single target ratio;
(c) SDMT: single droplet for multiple target ratios, each. Table 1 in-
dicates the scope of the proposed work against earlier approaches,
where yes/no indicates the applicability of the concerned method.

Table 1: Scope and results of earlier work.
Dilution/mixing SDST MDST SDMT

Algorithm N = 2 N > 2 N = 2 NNN >>> 222 N = 2 N > 2

[6, 17, 19, 24] Yes No No No No No
[5, 11, 23] Yes No No No Yes No

[20] Yes No Yes No No No

MM [24] Yes Yes No No No No
RMA [18] Yes Yes No No No No
RSM [25] Yes Yes No Yes Yes Yes

MTCS [16] Yes Yes No No No No
Proposed Method Yes Yes Yes Yes No No

2.2 Mapping a Mixing Tree on a DMF Biochip
Without any loss of generality, we assume that all (1 : 1) mix-

split operations are identical and each of them can be implemented
by an on-chip mixer in unit time step. In order to schedule a given
mixing tree on a biochip, any earlier algorithm, such as genetic
algorithm based scheduling [22], path scheduling [8], or optimal
mix scheduling (OMS) [13] can be used. In this paper, we have
used OMS [13] to schedule a mixing tree as it produces an optimum
solution for a mixing tree.

3. PROBLEM FORMULATION
The objective of the proposed “mixture-preparation engine” is to

implement MDST, i.e., to produce multiple (more than two) droplets
of a given mixture with reduced latency and reactant wastage. We
assume that each of the input fluids is supplied at CF = 100%.
Our assumptions of using unit volume droplets and (1 : 1) mix-split
steps are in conformity with current DMF technology [7], and be-
cause of the limitations of the availability of only (1 : 1) mix-split
operations, management of waste is important.

In order to implement MDST, two naive approaches may be used.
If the demand is D (D > 2), then the base mixing tree can be repeat-
edly traversed

⌈D
2
⌉

times to produce two target droplets each time.
This will increase the total number of mix-split steps (Tms), total
number of waste droplets (W ), and total number of input droplets
(I) by

⌈D
2
⌉

times relative to the base mixing tree. Another approach
is to increase the supply (number of input droplets or the volume of
the input droplets) at every leaf node of the base mixing tree. How-
ever, this approach requires an increase in the throughput and area
of the on-chip mixer(s) or a complete redesign of the electrode-
array layout, which is not feasible in practice.

The design problem of MDST with a given target ratio can be
formulated as follows. Inputs: (a) A set of N different fluids,
X = {x1,x2, . . . ,xN}, N ≥ 2, each supplied at CF = 100%, (b) a
target ratio a1 : a2 : . . . : aN of N fluids, such that the ratio-sum
L = ∑

N
i=1 ai = 2d , where d is the desired accuracy level in CF , (c)

the required number of target droplets, i.e., demand D, and (d) the
number of on-chip mixers, Mc. Output: A schedule of all (1 : 1)
mix-split steps and on-chip mixer allocation in order to produce D
droplets of the target mixture M of N fluids with the specified ratio
of its constituents. Objectives: (a) Minimize the time of comple-
tion (in number of time-cycles), Tc, (b) Minimize the total number
of input fluid droplets used, I and (c) Minimize the number of stor-
age units q needed on-chip.

4. MULTIPLE DROPLET ENGINE: MDST
The key idea behind the mixture-preparation engine MDST is to

utilize the waste droplets produced by the baseline mixing algo-
rithms [16, 18, 24, 25].

In general, RMA [18] constructs a base mixing tree with a larger
number of waste droplets compared to other mixing algorithms
(MM, RSM, MTCS). Thus, an engine based on RMA is likely to
produce a steam of target droplets more efficiently with the best
utilization of reactant fluids.

4.1 Mixing Forest for the MDST Engine
Given a target ratio with accuracy level d in CF , the base mixing

tree (T1) of depth d can be constructed by any existing mixing al-
gorithm. The root of the base mixing tree T1 represents the target
droplet. We first introduce the concept of a “mixing forest” (F ) to
represent the mix-split task graph, when the demand D of the target
droplets is more than two (2<D≤ 2d). The forest F is constructed
with several component mixing trees, each of which is determined
by the waste droplets produced from level (d− 1) to level 1 in the
base mixing tree. Each time a component mixing tree is included
in the mixing forest, we get two more target droplets denoted by its
root. Hence, by executing a mixing forest generated from a mixing
tree of depth d, a total of 2d target droplets can be produced. For
a demand D > 2d , this same process of including new component
mixing trees into the mixing forest is repeated from T1 till the total
demand D is met. On the other hand, with D = p.2d (p ∈ Z+),
the same mixing forest for D = 2d is repeated p times in the final
mixing forest. Thus, for a given demand D, the mixing forest F
contains

⌈D
2
⌉

component mixing trees ordered as T1,T2, . . . ,T|F |,
where |F |=

⌈D
2
⌉
. Note that for a demand D = p.2d (p ∈ Z+), all

the intermediate droplets are fully utilized, and the total number of
waste droplets (W ) becomes zero.

As an example, consider the PCR master-mix ratio
{10%:8%:0.8%:0.8%:1%:1%:78.4%}. This ratio can be ap-
proximated as {2:1:1:1:1:1:9} in a scale of 16 (where the accuracy
level, d = 4), and the droplet demand D = 2d for this target
mixture. A hierarchical view of the construction of the mixing
forest is shown in Fig. 1. The input droplets (leaf nodes), the target
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: Input droplet

4
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2

0

Level

: Target droplet

: Intermediate droplet used in the current tree

: Waste droplet in the current tree

: Waste droplet of one tree used in another tree

Target Ratio =

Mixing forest based on

2:1:1:1:1:1:9

Demand,

|F| = 8

I [ ] = [2, 1, 1, 1, 1, 1, 9], I = 16
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(d = 4)
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D = 16

Figure 1: Construction of the mixing forest from the base mix-
ing tree obtained by MM [24] for a target ratio 2:1:1:1:1:1:9
(i.e., d = 4) with demand D = 16.

droplets (root nodes), and two intermediate droplets generated
after a mix-split step (non-leaf node) are shown with different
colors. Note that out of the two intermediate droplets produced
at each interior node, one is used in the current tree (marked in
green) and the other one is the waste droplet (marked in red). A
brown-colored node indicates the use of an earlier waste droplet
in another tree. The color legends are explained in Fig. 1. For a
component mixing tree Ti, each non-leaf node is marked by a label
mi j denoting the mix-split step, where j is the level obtained in
breadth-first traversal ordering of Ti from left to right (see Fig. 1).

In order to satisfy the precedence relation in the underlying mix-
ing process, when a new component mixing tree Ti is included.
Figure 2 shows an example of a mixing forest that produces 20 tar-
get droplets of the same mixture. In a mixing forest, let Tms be
the total number of mix-split steps (i.e., non-leaf nodes in a mix-
ing forest) and W be the total number of waste droplets. From a
mixing forest, the total number of droplets required for each type
of input fluid can be computed by adding their numbers over all the
component mixing trees. Let I[ ] be the array representing the re-
quired numbers of input droplets and I be the total number of input
droplets required to implement the mixing forest.

If d is the depth of the base mixing tree T1, then the following
properties of a mixing forest F hold: (a) the root nodes of all the
component mixing trees in F are at the same level, i.e., at level d;
(b) the depth of each of the component mixing trees in F is less
than or equal to d.

4.2 Mapping of MDST Mixing Forest
To implement the MDST engine on a DMF biochip efficiently,

we need to determine an optimum schedule S of the mixing for-
est F . In other words, the assignment of time-cycle and allocation
of on-chip mixers to each of the mix-split (non-leaf) nodes of the

Algorithm 1 M_Mixers_Schedule (F , d, Mc)
Initialize level `= 1 and time-cycle t = 1.
Initialize queue Q =∅ and schedule S =∅.
while `≤ d do

Enqueue all new schedulable nodes of F ordered from level ` upwards to Q.
Dequeue Mc nodes from Q.
for each dequeued node n do

Assign mixer in increasing order of indices (say Mk) to n at time-cycle t and
S = S

⋃{n 7−→Mt
k}.

`= `+1 and t = t +1.
while Q 6=∅ do

Dequeue Mc nodes from Q.
for each dequeued node n do

Assign mixer in increasing order of indices (say Mk) to n at time-cycle t and
S = S

⋃{n 7−→Mt
k}.

t = t +1.
return Time of completion Tc = t.

forest are required. In a mixing forest F , if mi j is the jth mix-split
step (according to the breadth-first traversal order from left to right)
of the ith component mixing tree Ti, then mi j 7−→Mt

k indicates that
the mix-split step mi j is to be executed in mixer Mk at time-cycle
t. For MDST, both the time of completion (Tc) and the number of
required storage units (q) depend on the target ratio, the accuracy
level d, the baseline algorithm used in constructing the mixing tree,
and the demand D. Given these parameters, the constructed mix-
ing forest is unique and hence the values of Tms, W and I are also
unique. However, depending on the number of available on-chip
mixers Mc and the scheduling scheme, the mixing forest can take
different values of Tc and q.

Let tc be the time of completion (required number of clock-
cycles), when a base mixing tree is scheduled by OMS [13] with
Mc on-chip mixers. Note that a baseline mixing tree produces
two target droplets of a mixture in one pass. Hence, to meet
a droplet demand D, we need to run this procedure

⌈D
2
⌉

times.
Therefore, for a baseline approach, the total number of clock-cycles
(Tr), total number of waste droplets (Wr), and total number of in-
put droplets (Ir), will increase

⌈D
2
⌉
-fold compared to those of the

mixing tree. We consider three baseline approaches such as “Re-
peated MM” or RMM, “Repeated RMA” (RRMA) and “Repeated
MTCS” (RMTCS), where the base mixing trees are determined by
RMA [18] and MTCS [16], respectively, and they are scheduled by
OMS [13] with same number of mixers (i.e., Mlb of the correspond-
ing mixing tree obtained by MM [24]). In this paper, we have
compared our droplet streaming engine with these three baseline
approaches, namely RMM, RRMA and RMTCS. Following a sim-
ilar argument as in [13], we can show that the number of storage
units (qr) required to schedule the mixing forest using Mc on-chip
mixers is d− (log2 Mc +1). We denote the total number of storage
units required by any baseline approach as qr. Hence, the savings
in time of completion, waste and input reactant by the proposed
scheme with reference to a baseline approach can be computed as
∆Tc = Tr − Tc, ∆W = Wr −W and ∆I = Ir − I, respectively. The
additional number of storage units required can be estimated as
∆q = |qr−q|.

4.2.1 Scheduling of a Mixing Forest
Due to precedence among the non-leaf nodes in a mixing for-

est, a mix/split step can be completed only if those represented by
its two children are already executed or available as input. If the
number of on-chip mixers Mc is less than the minimum number
(lower-bound) of mixers required for the fastest completion of a
mixing forest F , then the time of completion (Tc) increases. We
present a scheduling algorithm M_Mixers_Schedule (MMS), given
by Algorithm 1, to schedule a mixing forest F with Mc mixers.

We call the set of mix-split (non-leaf) nodes of a mixing forest

3
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Figure 2: Mixing forest using MM [24] for MDST (D = 20) of the PCR master-mix with target ratio 2:1:1:1:1:1:9.

Algorithm 2 Storage_Reduced_Scheduling (F , d, Mc)
Initialize level `= 1 and time-cycle t = 1.
Initialize two priority queues, Qint =∅ and Qlea f =∅.
Initialize schedule S =∅.
while `≤ d OR any node is NOT scheduled do

for each schedulable node n do
if n is a parent of two leaf nodes then

Insert node n in Qlea f according to priority value.
else

Insert node n in Qint according to priority value.
intNodes = |Qint |.
Dequeue min(Mc, |Qint |) nodes from Qint .
Dequeue max(0, min(Mc− intNodes, |Qlea f |)) nodes from Qlea f .
for each dequeued node n do

Assign mixer in increasing order of indices (say Mk) to n at time-cycle t and
S = S

⋃{n 7−→Mt
k}.

`= `+1 and t = t +1.
return Time of completion Tc = t.

as the schedulable nodes, if they were not scheduled earlier and are
now ready to be performed at the same time-cycle. The schedu-
lable nodes can be processed concurrently, if a sufficient number
of mixers are available at that time-cycle. We maintain a queue
Q to enqueue all the schedulable nodes in a level-wise bottom-up
fashion, and Mc or fewer nodes are dequeued from Q to assign the
available mixers at time-cycle t. When all the levels are examined
and the queue Q is still non-empty, the remaining nodes are de-
queued to assign mixers in next time-cycles without enqueuing any
new nodes. In Algorithm 1, mixers can be allocated to the de-
queued nodes (in the increasing order of indices of the mixers) at
time-cycle t.

4.2.2 Storage-Reduced Scheduling of a Forest
Next, we propose a heuristic scheme to reduce storage require-

ments while scheduling a mixing forest. It prioritizes the schedul-
ing of non-leaf nodes in the mixing forest based on two factors:
if the mixing is stalled at a node, then (i) how it affects the total
storage requirement, and (ii) what is its impact on the time of com-
pletion of the mixing forest.

The first factor is the impact on the storage requirement. In a
mixing forest, a schedulable node may be of three types. It may
be an internal (non-leaf) node, of which (a) both the children are
internal nodes (Type-A), (b) only one (left or right) child is a leaf
node (Type-B), or (c) both the children are leaf nodes (Type-C). If a
node of Type-A is stalled, it would cost two storage units, if a node
of Type-B is stalled, it would cost one storage unit, and if a node
of Type-C is stalled, it would cost no storage units, per time-cycle.
This is because a leaf node indicates direct input from the fluid
reservoir and it does not require any on-chip storage unit. Hence,
the priority should be given to the internal nodes whose at least one
child node is an internal node (Type-A or Type-B), over the internal
nodes whose both the children nodes are leaf nodes (Type-C).

The second factor is the impact on the time of completion. While

Algorithm 3 Counting_Storage_Units (F , S , Tc)
Initialize an array Storage[1...Tc] to all 0s.
for each non-leaf node n in F do

tn = scheduled time-cycle of n.
tp = scheduled time-cycle of the parent node p of n.
for i = tn +1; i < tp; i = i + 1 do

Storage[i] = Storage[i] + 1.
Total number of required storage units, q = maxi Storage[i].

considering nodes of Type-C, it is more efficient to perform a mix-
split node at a lower level, rather than that at a higher level, since a
mixing operation at a higher level will not be able to proceed, until
the execution of its sibling is performed. Similarly, while consid-
ering nodes of Type-A or Type-B, it is better to execute a mix-split
node at a higher level than a similar node of a lower level, because
this will lead to earlier completion of the mixing forest.

We use two priority queues, Qint and Qlea f , to maintain these
priorities of schedulable nodes. The priority queue Qint stores the
schedulable nodes of Type-A and Type-B, whereas Qlea f stores
the schedulable nodes of Type-C. Within these priority queues,
the insertion of nodes is managed according to the priority rule
described above. This scheduling scheme is referred to as Stor-
age_Reduced_Scheduling (SRS) and the pseudo-code is written in
Algorithm 2. In SRS, while scheduling the nodes with Mc mixers,
Mc nodes are dequeued from the queue Qin first, then from Qlea f .
Both the queues have all the schedulable nodes. Hence, if the num-
ber of available schedulable nodes in the queue Qin and Qlea f is less
than Mc, then some mixers remain idle. Therefore, for the same
problem instance of MDST, SRS may take longer time than MMS.
However, SRS required less number of storage units than MMS.

5. PCR MASTER-MIX ENGINE
Consider the task of producing multiple droplets for the PCR

master-mix used in DNA amplification [14]; the details of this
mixture are given in Section 4.1. In Fig. 3, the base mixing tree
obtained by MM [24] is shown as T1, for which the minimum num-
ber of mixer for earliest completion (Mlb) is three. For a demand
D = 20, the mixing forest is scheduled by SRS (Fig. 3), in which
each non-leaf node is assigned with the time-cycle (denoted by an
integer in ‘italics’) and with a mixer among three available mixers
(M1, M2 and M3). A modified Gantt chart of this schedule is shown
in Fig. 4, which indicates the droplet emission sequence with the
increasing time-cycles. The total number of required storage units
can be obtained from the schedule using Algorithm 3.

We implement the PCR chip following a design technique pre-
sented in [21], as shown in Fig. 5. It requires seven fluid-reservoirs
to hold seven reactants (reservoir Ri is loaded with fluid xi), two
waste-reservoirs (W1 and W2), three on-chip mixers (M1, M2 and
M3) and five storage units (q1, . . . ,q5). The relative positions of
reservoirs and mixers are optimized considering the total droplet-
transportation cost. The matrix shown in Fig. 5 indicates the
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Figure 3: Mixing forest obtained by MM [24] for the target ratio 2:1:1:1:1:1:9 with D = 20 and scheduled by SRS with three on-chip
mixers M1, M2 and M3.
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Figure 4: Gantt chart showing scheduling of the mixing forest
(Fig. 3), storage requirement, and emission sequence of target
and waste droplets.

: Storage Unit

: Output Target Droplet

: Fluid−Revervoir to Mixer

: To Waste−Reservoir

R1 3 88
R2 9 414
R3 12 317
R4 9 144
R5 12 173

W2 12 177

M3 M2 M1

R2 R6 R1 R7 R4

R5R3

M1 M2 M3

M1 4 130
M2 0 44
M3 4 013

R6 6 511
R7 6 115

10 155
6 115
3 88
6 511
10 515

W1 12 717

q1
q2
q3
q4

W2
q5W1

q5 q4 q3 q2 q1

Figure 5: An example layout for PCR Master-Mix preparation;
the matrix shows the droplet-transportation costs (in terms of
the number of electrodes used).
droplet-transportation costs (in terms of number of electrodes used)
among the on-chip modules. For the mixing forest shown in Fig. 3,
the total droplet-transportation cost can be computed by adding the
costs for the transportation of all the droplets. It is observed that if
the respective mixing forest scheduled by SRS is implemented on
the layout of Fig. 5, a total of 386 electrodes needs to be actuated.
On the other hand, repeated application of the baseline mixing algo-
rithm MM [24] will require as many as 980 electrode actuations for
the same demand of target droplets. Excessive electrode actuation
leads to reliability problems and reduced lifetime for biochips [10].
Hence, with the proposed optimization method for MDST, the im-
plementation of the PCR engine can be handled efficiently.

6. SIMULATION RESULTS
We evaluate the performance of our emission engine on several

target ratios used in real-life bioprotocols with demand D = 32. We
assume that all the ratios are approximated in a scale of 256; Ex.1:
{26:21:2:2:3:3:199}, the PCR master-mix used for DNA amplifi-
cation [3, 14]; Ex.2: {128:123:5}, a mixture of phenol, chloroform
and isoamylalcohol used in the One-Step Miniprep method [4];
Ex.3: {25:5:5:5:5:13:13:25:1:159}, a mixture of 10 fluids is used
in the Molecular Barcodes methods [12]; Ex.4: {9:17:26:9:195},
a mixture of five fluids used in the Splinkerette PCR method [1];
Ex.5: {57:28:6:6:6:3:150}, a mixture used in the Miniprep proto-

col [15]. The comparative results of the two scheduling schemes
for MDST are shown in Table 2. For a basis of comparison, we
have considered the repeated applications of three baseline algo-
rithms (MM [24], RMA [18], MTCS [16]), which are named as
RMM, RRMA, RMTCS, respectively.

We carry out simulations with a large set of different target ratios
to evaluate the scheduling schemes. In a typical real-life bioassay,
as many as 12 different fluids may need to be mixed in a target mix-
ture [2]. Our test data set consists of 6058 synthetic target ratios of
N (2≤ N ≤ 12) different fluids with ratio-sum, L = 32. In order to
determine the base mixing tree for a target ratio, we consider each
of the three existing mixing algorithms such as MM [24], RMA [18]
and MTCS [16]. For MDST with a given ratio, this base mixing tree
can be scheduled using the schemes MMS or SRS. The base mixing
tree is optimally scheduled by the scheme OMS [13] with Mlb mix-
ers of the corresponding MM-tree (i.e., with the minimum number
of mixers needed for fastest execution).

We study the variations in average time of completion (Tc) and
average total input requirement (I) by varying the demand D from
2 to 32. The corresponding results shown in Fig. 6 demonstrate
that the use of MMS can save a significant volume of reactant fluids
compared to the baseline mixing algorithms. The completion time
can also be significantly reduced, when a certain number of storage
units (as determined by the scheduler) is available.

As summarized in Table 3, MMS can on average reduce the time
of completion (Tc) and total input reactant fluid requirements (I) by
72.5% and 75%, respectively, over any baseline mixing algorithm
by using at most 30 on-chip storage units. On the other hand, for
the same savings in I, on average, SRS can reduce the required
number of storage units (q) by 25.5%, if we slightly compromise
the production time (4.6% more) compared to MMS running the
same mixing algorithm.

Simulation results reveal that when RMA [18] is used as the base-
line algorithm, the scheduling schemes (MMS or SRS) save signifi-
cant amounts of reactant fluids and produce multiple target droplets
at a faster rate compared to other schemes. This can be verified
from the results shown in Table 3 and Fig. 7, where the variations
of Tc and q with the number of on-chip mixers M are shown for the
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Figure 6: Variations of average (a) Tc and (b) I, with varying
demand D over 6058 target ratios (where L = 32) of N different
fluids (2≤ N ≤ 12).
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Table 2: Comparison of Tc, q and I for MDST with a Combination of Three Scheduling Schemes and Three Mixing Algorithms∗.
Ratio # Clock Cycles, Tc (Time of Completion) # Storage Units Required, q # Reactant (Input) Droplets, I

A B C D E F G H I A B C D E F G H I A B/C D E/F G H/I
Ex.1 128 15 16 128 12 12 128 15 16 1 13 8 0 12 8 2 13 8 272 41 304 43 240 39
Ex.2 128 34 34 128 34 34 128 34 34 0 15 4 0 15 4 0 15 4 144 35 144 35 144 35
Ex.3 128 12 13 128 12 14 128 11 13 1 9 9 0 10 9 2 10 11 432 45 464 47 288 39
Ex.4 128 20 20 128 15 15 128 20 20 1 13 6 0 12 8 1 13 8 208 37 256 40 160 37
Ex.5 128 17 17 128 17 19 128 24 24 2 13 9 1 12 13 1 13 14 304 40 320 41 208 36
∗A: RMM, B: MM+MMS, C: MM+SRS, D: RRMA, E: RMA+MMS, F: RMA+SRS, G: RMTCS, H: MTCS+MMS, I: MTCS+SRS.

Table 3: Average % Improvements in Tc, I and q over 6058
Target Ratios of L = 32.

Parameter Relative Average % Improvement
Schemes MM [24] RMA [18] MTCS [16]

Time of Completion MMS‖R 73.0% 73.5% 71.1%
(in # Time Cycles), Tc SRS‖R 72.0% 72.1% 69.8%

Total Input Requirements MMS‖R 76.0% 76.6% 72.4%
(# Reactant Droplets), I SRS‖R 76.0% 76.6% 72.4%

# Storage Units, q SRS‖MMS 23.2% 26.0% 27.4%
Time of Completion, Tc SRS‖MMS −3.9% −5.5% −4.4%

MMS‖R: MMS over Repeated, SRS‖R: SRS over Repeated and SRS‖MMS: SRS
over MMS.

Table 4: Results for PCR Master-Mix using Three On-Chip
Mixers and a Fixed Number of Storage Units.

# Passes; (Total # Time Cycles, Total # Waste Droplets)
D d = 4 d = 5 d = 6

q = 3 q = 5 q = 7 q = 3 q = 5 q = 7 q = 3 q = 5 q = 7
2 One One One One One One One One One

(4,6) (4,6) (4,6) (5,9) (5,9) (5,9) (6,9) (6,9) (6,9)
16 Two One One Two One One Two One One

(10,7) (7,0) (7,0) (12,13) (8,3) (8,3) (13,14) (9,5) (9,5)
20 Two One One Two Two One Two One One

(11,5) (11,5) (11,5) (13,11) (13,11) (11,5) (14,13) (10,6) (10,6)
32 Three One One Three Two Two Three Two Two

(17,7) (14,0) (14,0) (20,16) (16,6) (18,10) (21,19) (17,12) (17,12)
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Figure 7: Variations of (a) Tc and (b) q with M by MMS and
SRS for the PCR master-mix ratio {2:1:1:1:1:1:9} with D = 32.
PCR master-mix with D = 32.

In real-life, the number of available on-chip storage is often lim-
ited. In order to execute our algorithms with limited resources,
several passes may be needed. Let D′ be the maximum demand
that is achievable in one pass of SRS given the number of available
on-chip storage units (q′). If D > D′, then this pass can be repeated⌊ D

D′
⌋

times, where in the last pass an incomplete mixing forest is
to be scheduled for producing

(
D−D′.

⌊ D
D′
⌋)

target droplets. This
technique enables us to design a droplet-streaming engine, which
is able to fulfill a given demand satisfying the constraint of avail-
able on-chip storage electrodes. In our experiment for producing
PCR master-mixture on the layout of Fig. 5, we varied the number
of storage units (q as 3, 5, and 7), accuracy level (d as 4, 5, and 6)
and demand (D as 2, 16, 20, and 32). The results on the number of
passes, the time of completion (in total number of time cycles), and
the total number of waste droplets are reported in Table 4.

7. CONCLUSIONS
We have presented the first optimization techniques for produc-

ing a stream of mixture droplets on a DMF biochip subject to the
availability of a given number of on-chip mixers and storage elec-
trodes. Two algorithms have been described for efficient imple-
mentation of the underlying mixing forest on a DMF biochip. The
key idea is to suitably reuse the intermediate waste droplets, and
thereby producing more target droplets, instead of discarding them
as waste. Simulation results highlight the role that electronic de-
sign automation techniques can play in emerging biotechnology
and biomedical applications.
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