

PETGEN: Personalized Text Generation Attack on Deep Sequence Embedding-based Classification Models

Bing He, Mustaque Ahamad, Srijan Kumar Georgia Institute of Technology Email: <u>bhe46@gatech.edu</u>, <u>srijan@gatech.edu</u> All code and data at:

https://github.com/srijankr/petgen

Malicious Users on Social Media

- A critical task for social media platforms to ensure safety and integrity
 - ~5% monthly active users are fake accounts in Facebook
 - ~63% reviews on Amazon beauty are fake
 - Other types of malicious users: fraudsters, trolls, spammers, cyber-bullies

Deep Learning Solutions

- Deep learning methods have been created to detect malicious users
- Many solutions use user activity sequences for detection

Adversaries are Active

- Malicious users can change their behavior to avoid detection
- Prior deep learning models, from computer vision and NLP domains, have been shown to be vulnerable
- Vulnerability of deep user sequence embedding models is unknown

Key Question

Can malicious users avoid detection by exploiting model vulnerabilities?

Key Question

Can malicious users avoid detection by exploiting model vulnerabilities?

Our Solution: Adversarial evasion attack on deep user sequence classification models

Our Attack: Next Post Attack

Our Attack: Next Post Attack

Adversary generates a new post, such that the user classification changes.

What are the desirable properties of the attack post?

- 1. Should fool the classification model
- 2. Should be knowledgeable about the target context
- 3. Should be realistic and personalized
 - Aware of user's writing style
 - Recent vs past interests
 - Aware of user's past posts on similar topics

Existing Methods

		C1 Attack goal	C2 Target context	C3 Personalized
	Modification-based attack			
•	Copycat			
•	Hotflip			
•	Universal Adversarial Trigger			
•	TextBugger			
•	Generation-based attack		-	
	Our model: PETGEN			

PETGEN

- Personalized <u>Text Gen</u>erator
- End-to-end multi-stage multi-task text generation framework
- Two major modules:

Personalized Text Generator: PETGEN

Personalized Text Generator: PETGEN

Capture user sequence embedding

Capture user sequence embedding

Capture user sequence embedding

Personalized Text Generator: PETGEN

Multi-Task Tuning

Four objectives:

- Style: Relativistic GAN loss
- Attack: Cross-entropy loss
- Recent Post Relevance: Maximum Mean Discrepancy (MMD) Loss
- Target Context Relevance: MMD Loss

Optimization strategy:

- Multi-stage loss optimization. One loss is optimized at a time
- Done till convergence.

Personalized Text Generator: PETGEN

Evaluation Setup

Deep user sequence classification model – TIES model [1]

- Hierarchical Recurrent Neural Network (HRNN) [2]

Datasets

Dataset	Yelp	Wikipedia
Number of users	3,940	794
Number of benign users	2,016	397
Number of malicious users	1,924	397
Total number of posts	35,123	11,547
Madian posts per user	9	15

Code and data are available at: https://github.com/srijankr/petgen

1. Noorshams, Nima, Saurabh Verma, and Aude Hofleitner. "TIES: Temporal Interaction Embeddings For Enhancing Social Media Integrity At Facebook.", SIGKDD,. 2020.

2. Zhao, Yi, Yanyan Shen, and Junjie Yao. "Recurrent Neural Network for Text Classification with Hierarchical Multiscale Dense Connections." *IJCAI*. 2019.

Baseline Attacks

- Copycat: copy user's past post on similar context
- HotFlip: Copycat + replace most important word with similar word
- UniTrigger: Copycat + add tokens to the end of the post
- TextBugger: Copycat + deletion/swap of characters
- Malcom: state-of-the-art model
 No baseline is sequence-aware

White-Box Attack Performance

Attack on the **TIES model** on Yelp data

- Model performance reduces against all attacks.
- PETGEN is the most successful attack.

White-Box Attack Performance

]	HRNN c	lassifier		Min. imp	provement of		TIES cl	assifier		Min. imp	provement of
Model	Wikipedia		Yelp		PETGEN over baseline		Wikipedia		Yelp		PETGEN over baseline	
	F1↓	Atk↑	F1↓	Atk↑	F1	Atk	F1↓	Atk↑	F1↓	Atk↑	F1	Atk
Without attack	0.601	-	0.636	-	-	-	0.617	-	0.686	-	-	-
Copycat	0.550	21.3	0.610	8.0	9.836%	26.761%	0.513	16.3	0.625	11.5	6.823%	47.239%
Hotflip	0.581	21.2	0.591	9.5	6.937%	27.358%	0.514	15.0	0.641	10.3	7.004%	60.000%
UniTrigger	0.495	24.5	0.602	7.8	4.242%	10.204%	0.515	15.7	0.679	9.1	7.184%	52.866%
TextBugger	0.550	21.4	0.610	8.3	9.836%	26.168%	0.520	16.3	0.637	11.0	8.077%	47.239%
Malcom	0.479	25.5	0.570	18.0	1.044%	5.882%	0.560	18.0	0.538	21.8	6.877%	33.333%
PETGEN (proposed)	0.474	27.0	0.55	21.2	-	-	0.478	24.0	0.501	35.8	-	-

- Model performance reduces against all attacks
- PETGEN is the best attack

Black-Box Attack Performance

- HRNN surrogate model is trained on the observed outputs of the TIES black-box model.
- Black-box attacks are also **successful**. Attack performance lower than white-box.
- **PETGEN** is the most successful attack.

Black-Box Attack Performance

]	HRNN c	lassifier		Min. imp	provement of		TIES cl	assifier		Min. imp	provement of
Model	Wikipedia		Yelp		PETGEN over baseline		Wikipedia		Yelp		PETGEN over baseline	
	F1↓	Atk↑	F1↓	Atk↑	F1	Atk	F1↓	Atk↑	F1↓	Atk↑	F1	Atk
Without attack	0.601	-	0.636	-	-	-	0.617	-	0.686	-	-	-
Copycat	0.53	22.1	0.609	9.0	3.585%	8.597%	0.615	15.0	0.618	12.0	6.016%	64.167%
Hotflip	0.538	22.3	0.585	11.1	5.019%	7.623%	0.642	13.8	0.635	11.0	9.969%	79.091%
UniTrigger	0.529	22.0	0.624	7.5	3.403%	9.091%	0.601	17.9	0.601	15.0	3.827%	31.333%
TextBugger	0.545	21.0	0.607	9.5	6.239%	14.286%	0.627	14.0	0.617	12.2	7.815%	61.475%
Malcom	0.524	20.0	0.573	17.5	2.481%	20.000%	0.599	19.9	0.573	15.4	3.316%	27.922%
PETGEN (proposed)	0.511	24.0	0.53	22.3	-	-	0.578	33.0	0.554	19.7	-	-

- A HRNN surrogate model is trained on observed outputs of the original black-box model.
- Black-box attacks are also successful. Attack performance lower than white-box.
- **PETGEN** is the most successful attack.

Generated Text Quality

How realistic is the generated text?

PETGEN has the best text generation quality

Human Evaluation of Text Quality

- Two human raters were shown a pair of texts generated by Malcom and PETGEN
 - Text generated for the same setting
 - 50 pairs
- Task: which text is more realistic?
- Inter-rater agreement = 0.66
- **PETGEN texts are more realistic** 60% of the times.

Ablation Study

- All components of PETGEN contribute to the performance
- PETGEN with all components is the best or second best in most cases

Madal	Wikipedia Dataset							Yelp Dataset					
Model	F1↓	Atk↑	BLEU↑	TCS↑	RS↑	CPS↑	F1↓	Atk↑	BLEU↑	TCS↑	RS↑	CPS↑	
PETGEN Base Text Generator	0.479	26.5	0.899	0.375	0.268	0.247	0.625	11.7	0.857	0.382	0.349	0.187	
w/ Style	0.576	21.1	0.895	0.390	0.218	0.249	0.59	17.5	0.871	0.481	0.324	0.301	
w/ Attack against TIES	0.478	25.0	0.894	0.368	0.216	0.216	0.499	45.3	0.843	0.476	0.357	0.250	
w/ Attack against HRNN	0.465	27.5	0.895	0.388	0.240	0.249	0.530	29.5	0.846	0.445	0.315	0.157	
w/ Recent Post Relevance	0.486	23.8	0.887	0.463	0.275	0.267	0.592	17.7	0.851	0.495	0.43	0.215	
w/ Target Context Relevance	0.483	23.9	0.887	0.459	0.258	0.258	0.571	18.0	0.830	0.559	0.361	0.203	
w/ Contextual Post Relevance	0.566	21,2	0.705	0.397	0.225	0.276	0.554	19.2	0.845	0.514	0.331	0.451	
PETGEN against HRNN	0.474	27.0	0.893	0.463	0.275	0.281	0.550	21.2	0.852	0.544	0.401	0.410	
PETGEN against TIES	0.478	24.0	0.896	0.474	0.233	0.254	0.501	35.8	0.870	0.519	0.397	0.398	

Notation: Bleu score (BLEU), Target Context Similarity (TCS), Recent Post Similarity (RS), Contextual Post Similarity (CPS)

Conclusions

- PETGEN is the first attack framework against user sequence classification models
- Models are vulnerable against attacks
- PETGEN is the most effective attack
 and generates reasonable text
- Generated attacks can be used to create more robust models

All code and data at: http://claws.cc.gatech.edu/petgen

Postdoc Opening

- Join us at Georgia Tech!
- Georgia Tech One postdoc position to work in recommendation systems and/or graphs
- Contact me: srijan@gatech.edu or say hello during KDD

