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ABSTRACT

We proposeanew two-phase method for the coarse-grain decompo-
sition of irregular computational domains. Thiswork focusesonthe
2D partitioning of sparse matrices for parallel matrix-vector multi-
plication. However, the proposed model can also be used to decom-
pose computational domains of other parallel reduction problems.
This work also introduces the use of multi-constraint hypergraph
partitioning, for solving the decomposition problem. The proposed
method explicitly models the minimization of communication vol-
ume while enforcing the upper bound of p + ¢ — 2 on the maxi-
mum number of messageshandled by a single processor, for a par-
alel systemwith P = p x ¢ processors. Experimental results on
awide range of realistic sparse matrices confirm the validity of the
proposed methods, by achieving up to 25 percent better partitions
than the standard graph model, in termsof total communicationvol-
ume, and 59 percent better partitions in terms of number of mes-
sages, on the overall average.

1. INTRODUCTION

Thestandard graph partitioning approach hasbeenwidely usedto
decomposeirregular domains for the sake of efficient parallel exe-
cution[2, 3, 16,17, 19, 22, 23, 25, 30, 34]. In our previousworks|[6,
7, 9], we introduced two computational hypergraph modelsfor the
decomposition problems. In the mentioned works, the decomposi-
tion problem is model ed as amincut graph/hypergraph partitioning
problem, such that minimization of cut-cost targeted to the mini-
mization of total communication volume. However, for architec-
tureswith high messagelatency, minization of number of messages
is also important. In this work, we propose a two-phase method
which employs multi-constraint hypergraph partitioning. The pro-
posed method naturally maintainsan upper boundfor the maximum
number of messageshandled by a single processor while minimiz-
ing thetotal communicationvolume. Thisupper boundisp + ¢ — 2
messages per processor for a parallel systemwith P = p x ¢ pro-
Cessors.
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Partitioning of irregularly sparse matrices for repeated
sparse-matrix vector multiplication (SpMxV) isan important appli-
cation for the decomposition methods. Repeated SpMxV y = Ax
that involveslarge, sparse, structurally symmetric or nonsymmetric
square matrix A isthekernel operation in iterative solvers. These
algorithms also involve linear operations on dense vectors. For ef-
ficient parallelization of theseiterative algorithms, nonzerosof ma-
trix A should be partitioned among processorsin such away that
communication overhead is kept low while maintaining computa-
tional load balance. In order to avoid the communication of vector
componentsduring linear vector operations, a symmetric partition-
ing schemeisadopted. That is, all vectors(including = and y vec-
tors) used in the solver are divided conformally.

Parallel SpMxV isone of the basic parallel reduction algorithms.
Elementsof = vector aretheinputsof thereduction and elements of
y vector arethe outputs of thereduction. Matrix A correspondsto
the mapping matrix from input elementsto output elements. Hence,
any techniqueusedin sparsematrix partitioning isalso applicableto
other reduction problems. For example, analysis of large scientific
datasetsinvolvesreduction operations. Vast amountsof datasetsare
being continuously produced by advanced sensors attached to in-
struments; such as earth-orbiting satellites[31, 32, 37] and medical
instruments[1]. Inaddition, long running scientific simulationsthat
periodically generate snapshots of their time dependent states [11,
29, 36] are generating unprecedently large volumes of datafor sci-
entists. Typical analysisof such datasetsusually involvessubseting
(to extract the data of interest from al the data available), and pro-
cessingandtransforming it into anew dataproduct. Thetypeof data
processing usually resultsin asignificant reduction in datavolume.
Both the existing graph models and our hypergraph models can be
used to model those reduction operations asit hasbeen used in Ac-
tive Data Repository (ADR) [12, 24]. ADR is aframework devel-
oped at University of Maryland that provides support for integrat-
ing storage, retrieval and processing of multi-dimensional datasets
on distributed memory machines. A variant of our fine-grain hyper-
graph model [5, 9] has been used in the query scheduling phase of
ADR to solvedecomposition (workload distribution) problem [13].
Hencethe proposed two-phase coarse-grain decomposition method
is also applicable to the reduction problems together with its nice
number of messagefeature.

Theapplication of the proposed method to the sparse-matrix par-
titioning problem results in 2D checkerboard partitioning.
Theniceproperty of thispartitioning schemeisthat it boundsthethe
maximum number of messageshandledby aprocessorto p + ¢ — 2.
Theparallel SpMxV algorithmsproposed by Hendricksonet al. [ 18]
and Lewis and van de Geijn [28] for 2D checkerboard partitioning
aretypically suitablefor densematricesor sparsematriceswith struc-



tured nonzero patterns that are difficult to exploit. The 2D checker-
board partitioning schemes proposed in the literature [18, 27, 28,
33] do not exploit sparsity for reducing communicationvolume, and
hence, thetotal communicationvolumemay beashighas (p+ ¢ —

2)m for an m x m matrix. Inthiswork, we propose atwo-phase
checkerboard partitioning method based on multi-constraint hyper-
graph partitioning for minimizing communication volume while
maintaining computational load balance.

2. PRELIMINARIES

A hypergraph H=(V, ) isdefined asaset of vertices V anda
set of nets (hyperedges) A among those vertices. Every net n; €
N isasubset of vertices, i.e, n; C V. Theverticesin anet n;
are called its pins. Weights can be associated with the vertices of a
hypergraph. Let w; denotethe weight of vertex v, €V .

A K-way vertex partition 11 = {1, V., ... , Vi } of H issad
to bebalancedif each part V), satisfiesthe balancecriterion

Wi < Waug(1+¢), fork=12,... K. 1)

In (1), weight W, of apart Vi isdefined asthe sum of the weights
of the vertices in that part (ie. Wi = 3 oy wi),
Wavg=(3_,,ep wi)/ K denotesthe weight of each part under the
perfect load balance condition, and ¢ representsthe predetermined
maximum imbalanceratio allowed.

Inapartition IT of H, anet that hasat least onepin (vertex) in a
part is said to connect that part. Connectivity set A; of anet n; is
definedasthe set of partsconnectedby n ;. Connectivity A; =|A;|
of anet n; denotesthe number of parts connectedby » ;. A net
n; issaidto be cut (externa) if it connectsmore than one part (i.e.
A; > 1), and uncut (internal) otherwise (i.e. A; = 1). The set of
external netsof apartition T isdenoted as Nz . Therearevarious
cutsize definitions for representing the cost of a partition II. Two
relevant definitions are;

cutsize(Il) = |Ng| 2
cutsize(ll) = Z (A —1). (3
g G./\/E

Eq. 2, the cutsizeis equal to the number of cut nets. In Eq. 3, each
cut net n; contributes A; — 1 to the cutsize. Hence, the hyper-
graph partitioning problem can be defined as the task of dividing
a hypergraph into two or more parts such that the cutsize is mini-
mized, while a given balance criterion (1) among the part weights
ismaintained. The hypergraph partitioning problem isknownto be
NP-hard [26].

3. COARSE-GRAIN DECOMPOSITION

Row and column coherencesare important factorsin sparsema-
trix partitioning for parallel SpMxV. Column coherencerefersto the
fact that nonzeroeson the same column incur the need for the same
x -vector entry. Row coherencerefer to the fact that nonzeroeson
the same row incur the contribution of scalar multiplication results
to the same y -vector entry. Inapartitioning, disturbing column co-
herenceincurs expand communication of x -vector entries, whereas
disturbing row coherency incurs fold communication of partial y -
vector results. Here, expand communication of an x-vector entry
z; refersto the multicast operation where a processor, the one that
ownstheupdated « ; value, sends(i.e., expands) thesame = ; value
to all processorsthat have nonzeros at column j. Fold communi-
cation of partial y-vector results refers to the multinode accumula-
tion operation on local, sparse'y vectors computed by the proces-
sors. That is, every processor having at |east one nonezero at row :

generates a partial y; result after local SpMxV computations, and
these processors send their partial y; results to the processor that
owns y; for alocal accumulationoperationto obtainthefinal y; re-
sult. Notethat 1D rowwise partitioning incurs only expand commu-
nication, becauseit respectsrow coherenceby assigning entirerows
to processors while disturbing column coherence. In a dual man-
ner, 1D columnwise partitioning incurs only fold communication,
becauseit respects column coherence by assigning entire columns
to processorswhile disturbing row coherence. Soin 1D matrix par-
titioning, the number of messageshandled by aprocessor may beas
highas P — 1, for aparallel systemwith P processors. Theworst-
casetotal communicationvolumeis (P —1)m wordsfor an mxm
matrix, and this worst-case occurs when each row (column) stripe
hasat |east one nonzeroin each column (row) in rowwise (column-
wise) partitioning. The standard graph-partitioning approach used
for 1D matrix partitioning has someflaws suchthat the cutsize met-
ric doesn't reflect the actual communication volume and it is
restricted to symmetric matrices. Our previous hypergraph parti-
tioning models [6, 7] correctly minimizes the communication vol-
umein 1D matrix partitioning. Other recently proposed aternative
models for 1D matrix partitioning were discussed in the excellent
survey by Hendrickson and Kolda [17].

Inarecentwork [5, 9], we haveinvestigated 2D fine-grain sparse-
matrix partitioning which is overlooked in the literature. In this
scheme, nonzeroes are alowed to be assigned individually to pro-
cessors. Since neither row coherence nor column coherenceis en-
forced, this scheme may incur both expand and fold operations so
that the number of messageshandled by aprocessor may beashigh
as 2(P—1). Theworst-casecommunicationvolumeis 2( P —1)m
words in total. We proposed a fine-grain hypergraph-partitioning
model [5, 9] which correctly minimizes total communication vol-
ume in this highly scalable 2D partitioning scheme. Experimental
results showed that this 2D fine-grain partitioning model
achieves drastic reduction in communication volume compared to
1D partitioning at the expense of increase in the number of total
messages. This experimental finding is expected, because the 2D
fine-grain model has a higher degree of freedom than the 1D mod-
elsin minimizing communication volume sinceit does not enforce
any coherence.

The 2D checkerboard partitioning schemewidely used for paral-
lel SpMxV can be considered as a trade-off between 1D partition-
ing and 2D fine-grain partitioning schemes. This scheme respects
both row and column coherencesin a coarse level assuming a 2D
processor mesh organization. It respects row coherence by assign-
ing entire matrix rows to the processorsin the samerow of the pro-
cessor mesh. It respects column coherence by assigning entire ma-
trix columnsto the processorsin the same column of the processor
mesh. Although both coherences are disturbed in processor level,
the disturbances are confined to the processors of the same rows
and columns. So, this scheme confinesthe expand operationsto the
columns and fold operationsto the rows of the processor mesh. In
this way, it reduces the maximum number of messages handled by
aprocessor to p + ¢ — 2 for a p x ¢ mesh of processors. Thetotal
communication volumemay beashighas (p + ¢ — 2)m, and this
worst-caseoccurswhen each row and column of each submatrix has
at least one nonzero. The 2D checkerboard partitioning schemes
proposed in the literature [18, 27, 28, 33] mainly aim at load bal-
ancing and they do not exploit sparsity for reducing communication
volume.

Here, we propose a novel hypergraph-partitioning approach for
minimizing total communication volume while maintaining com-
putational load balancein checkerboard partitioning. The proposed
method is a two-phase method, in which each phase model s either



the expand-communicationvolumeor fold-communication volume.
Therefore, we have two alternative schemes for the proposed ap-
proach. For the sake of simplicity in the presentation we will dis-
cussonly one scheme, the one which model s the volume of expand
communication in the first phase and then the volume of fold com-
munication in the second phase. A dual discussion holds for the
other scheme. We will discussthe checkerboard partitioning of an
m X m sguarematrix A onapxg processor mesh.

In the first phase, we perform a p-way 1D rowwise partitioning
of matrix A wusing the column-net hypergraph-partitioning
model proposedin our previousworks([6, 7]. Inthe column-net hy-
pergraph representation Hr = (Vr, Nc) of matrix A, there exist
onevertex v; € Vx andonenet n; € N for eachrow »;, and
column ¢;, respectively. Net n; C Vx contains the vertices cor-
responding to the rows which have a nonzero entry in column ¢ ;.
That is, v; € n; if andonly if a;; # 0. Weight w; of avertex
v; € Vr isset equal to thetotal number of nonzeroesinrow r; . As
we discussed in [6, 7], by partitioning the column-net hypergraph
into equally weighted vertex parts (maintaining balance condition
in Eq. 1) sothat netsare split among as few parts as possible (min-
imizing cutsize metric in Eq. 3), the model correctly minimizes to-
tal volume of expand communication while maintaining computa-
tional load balancein rowwise partitioning.

A p-way partition IIx = {V1,...,V,} of Hx inducesa p-
way rowwise partitioning {R1,... , R} of matrix A, where R,
denotes the set of rows correspondingto V. for a=1,2,... ,p.
Without lossof generality weassumethat theset R . of matrix rows
isassignedto row « of processor meshfor «=1,2,...,p. This
rowwise partitioning also correspondsto assigning a m o X m row-
stripe A7, torow « of processor mesh, where m . =|Va|. Inarow-
wise partitioning, acolumn is said to be internal if al of its nonze-
roes are confined to asingle row stripe. A column issaid to be ex-
ternal if it has nonzeroesin therows of at least two row stripes. An
external column ¢; which hasnonzeroesin A ; row stripeswill in-
cur the expand communication of «; to A; — 1 processorsaong
acolumn of the processor meshif all nonzeroesof ¢; are assigned
to the same processor-column. Columnwise partitioning to be per-
formed in the second phase satisfies this coherence.

In the second phase, we perform a ¢-way multi-constraint hy-
pergraph partitioning on the row-net representation of matrix A for
columnwise partitioning. In the row-net hypergraph representation
He=(Ve,Nr), thereexist onevertex v; € Ve andonenet n; €
Nz for each column ¢; and row r;, respectively. Net n; C Ve
contains the vertices corresponding to the columns which have a
nonzero entry inrow r;. Thatis, v; € n; if andonly if a;; #0.
Aswediscussedin [6, 7], minimizing the cutsizeaccordingto Eq. 3
correspondsto minimizing the total volume of fold communication
of partial y; resultsthat needto beaccumulated. A ¢-way partition
II¢ of H¢ inducesa ¢-way columnwisepartitioning {C1, ... ,Cq}
of matrix A, where Cs denotesthe set of columns assignedto pro-
cessor column 3, for 5=1,2,... ,¢. So, (Ilx, Il¢) determinesa
checkerboard partition, where R . and Cs denotethe sets of rows
and columns assigned to processor P, a row « and column 3
of the processor mesh. That is, processor P.g will own nonzero
ai; 70 of matrix A if r; € R, and ¢; € Cg. For computational
load balancing processorsshould be assigned roughly equal number
of nonzeroes.

We introduce the multi-constraint hypergraph-partitioning con-
cept for handling the load-balancing problem in our two-phase ap-
proach. The notion of multi-constraint and multi-objective parti-
tioning has recently become popular in graph partitioning [21, 35]
for the parallelization of multi-physicsand multi-phase applications.
In these applications, each constraint effectively correspondsto the

computational load of the vertex in a different phase of the target
paralel algorithm. Hence, maintaining balance on each constraint
correspondsto maintaining load balancein each phase of the paral-

lel algorithm. For our specific application, multiple weights of the
verticesdo not correspondto the weightsof different phases. In fact
they represent the computational loadsthat will be executed concur-

rently.

In our model, the rowwise partitioning Ilx = {R4,..., R}
performed in the first phase already produces row stripes with
roughly equal number of nonzeroes. In the second phase, each ver-
tex v; of Hc isassigned p weights: w;(a),for a=1,2,...,p.
Here, w;(«) isset equal to the number of nonzeroesof column ¢;
inrow-stripe A7, . Notethat all internal columnsin the rowwise par-
titioning will have only one nonzero weight, whereas only external
columnswill have multiple nonzero weights. In any case, the sum
of the p weights of each vertex will be equal to the total number
of nonzeroes on the respective column. So, the balance constraint
givenin Eq. 1isreplaced with p balance constraintsthat should be
maintained simultaneoudly, i.e.,

Wa(a) < Wawg(14+¢€) , =1,2,... ¢ (4

forescha =1,2,...,p.

Here, Wﬁ(a):zvlevﬂ w;(a) istheweight of part Vs of II¢ on
the o -th constraint. Notethat Ws(«) effectively denotesthe num-
ber of nonzeroesassigned to processor Pz in (IIx, II¢). Hence,
in the second phase, maintaining the balance on each weight con-
straint during partitioning H¢ correspondsto maintaining compu-
tational load balance on the processors of each row of the 2D pro-
cessor mesh.

Figures 1-3 illustrate the basic steps of our method for 2 x 2
checkerboard partitioning of a sample matrix. We labeled the ver-
ticesand netsof hypergraphswith letters “r” and “¢” to denoterow
and column of a matrix, for simplicity in the presentation. In the
hypergraph drawings, circlesrepresent vertices, whereasdotsrepre-
sent nets. Figure 1(b) displaysthe column-net hypergraph represen-
tation Hr of asamplematrix A givenin Figure1(a). It also shows
a2-way partition Iz of Hx . Figure 2(b) showsthe 2-way row-
wise partitioning of sample matrix A induced by I . Figure2(b)
displaysthe row-net hypergraphrepresentation H ¢ of matrix A. It
also showsa2-way multi-constraint partition IIc of Hx . InFig. 2,
wo(1) = 4 and wo(2) = 0 for internal column ¢y of row stripe
R1, whereas ws (1) =4 and ws(2) = 2 for external column cs .
Figure 3 displaysthe 2 x 2 checkerboard partitioning induced by
(g, Oe).

4. EXPERIMENTAL RESULTS

We havetested thevalidity of the proposed 2D partitioning method
on variousrealistic sparsetest matrices arising in different applica-
tion domains[4, 10, 14, 15]. Table 1illustrates the properties of the
test matrices listed in the order of increasing number of nonzeros.
The2D partitioning resultswere obtained by running our multilevel
hypergraph partitioning tool PaToH [8] on the hypergraphs. The
2D partitioning resultswere compared with the 1D partitionings ob-
tained by running MeTiS[20] using the standard graph models, and
PaToH using the 1D column/row-net hypergraph model presented
in[6, 7]. For aspecific P value, P -way partitioning of atest matrix
constitutes a partitioning instance. For 2D partitioning instances,
without loss of generality we selected p = ¢ = v/P. MeTiSand
PaToH were run 50 times starting from different random seeds for
each partitioning instance and average performance results are dis-
played in Figure 4. Communication volume values (in terms of the
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Table1: Propertiesof test matrices

number of nonzeros

number of per row/col
name rows/cols tota [ min  max avg
sherman3 5005 | 20033 1 7 4.00
bcspwrl0 5300 | 21842 2 14 412
ken-11 14694 | 82454 2 243 561
nl 7039 | 105089 1 361 1493
ken-13 28632 | 161804 2 339 565
cq9 9278 | 221590 1 702 2388
co9 10789 | 249205 1 707 2310
pltexpA4-6 26894 | 269736 5 204 10.03
vibrobox 12328 | 342828 9 121 2781
cre-d 8926 | 372266 1 845 4171
cre-b 9648 | 398806 1 904 4134
world 34506 | 582064 1 972 16.87
mod2 34774 | 604910 1 941 1740
finan512 74752 | 615774 3 1449 824

number of words transmitted) are scaled by the number of
rows/columns of the respective test matrices. Average and maxi-
mum number of messages handled by a single processor are also
displayed in this figure. The percent load imbalance values are be-
low 3% for all partitioning results displayed in thesefigures, where
percentimbalanceratioisdefinedas 100 x (Winae — Wavg)/Wavg -
Figure 4(d) displaysthe partitioning times on aworkstation equipped
with a 133 MHz PowerPC processor with 64 Mbytes of memory.

In terms of total communication volume, Figure 4(a), the pro-
posed method produces better partitions than the standard graph
model on 29 instances out of 42 instances. On the average, the pro-
posed method produces 23%, 25% and 27% better partitions than
the standard graph model on 16, 32 and 64 processors. The pro-
posed method produces comparableresults with the 1D hypergraph
model in terms of communication volume.

In the proposed method, the upper bound on the maximum num-
ber of messageshandled by aprocessoris6, 10, and 14 for aparallel
systemwith 16, 32, and 64 processors, respectively. Asseenin Fig-
ure 4(b), these upper bound values are reached on 31 instances out
of 42 instances. In terms of maximum number of messageshandled
by asingle processor, the proposed method producesdrastically bet-
ter partitions thanthe 1D graph and hypergraph modelson every in-
stance. On the average, it produces 56%, 62% and 72% better par-
titions than the 1D graph model on 16, 32 and 64 processors. These
relative performancefiguresslightly reduceto 55%, 60% and 69%,
respectively, for the 1D hypergraph model. Asexpected the perfor-
mance gap increases rapidly with increasing number of processors
in favor of the proposed method.

In terms of average number of messageshandled by asingle pro-
cessor, Figure 4(c), the proposed method produces better partitions
than the 1D graph model on every instance except 32- and 64- way
partitioningsof BCSPWR10 matrix. It producesbetter partitionsthan
the 1D hypergraph model on 33 instances out of 42 instances. On
the average, the proposed coarse-grain method produces54%, 57%,
and 62% better partitionsthan the 1D graph model on 16, 32, and 64
processors. Theserelative performancefigures considerably reduce
to 44%, 42% and 46%, respectively, for the 1D hypergraph model.
Note that these relative performance figures also show the relative
figures on the total number of messages.

The proposed method is approximately 3 times slower than the
standard graph model, onthe overall average (Figure4(d)). Theex-
ecutiontimes of 1D hypergraph model and coarse-grain method are
almost the same. For P -way partitioning, 1D hypergraph model
necessitates P -way partitioning of the hypergraph representation
of the sparse matrix. However, the proposed method requires two

+/P-way partitionings of the hypergraph representations of the
sparse matrix. Since the current PaToH implementations achieve
multi-way partitioning by recursivepartitioning, two /P -way par-
titioningsisusually faster than one P -way partitioning, eventhough
oneof thetwo /P -way partitioningsisamulti-constraint partition-

ing.

5. CONCLUSION

A coarse-grain decomposition method was proposed for 2D par-
titioning of sparse matrices which has a better upper bound on the
maximum number of messages handled by a single processor than
the existing methods. The proposed model reduces the 2D matrix
partitioning problem to a multi-constraint hypergraph partitioning
problem so that partitioning objectives correspond to minimizing
communication volume while maintaining load balance during re-
peated matrix-vector multiplication. The performance of the pro-
posed 2D partitioning model was tested against 1D partitioning
through graph and hypergraph models on a wide range of realis-
tic sparse matrices. On the average, the 2D partitionings achieved
about 59 and 44 percent better decompositions than 1D graph and
hypergraph models, respectively, in the number of communications
required for asingle parallel matrix-vector multiplication.
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(d) Execution times of decomposition heuristics
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