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ABSTRACT
We propose a new two-phase method for the coarse-grain decompo-
sition of irregular computational domains. This work focuses on the
2D partitioning of sparse matrices for parallel matrix-vector multi-
plication. However, the proposed model can also be used to decom-
pose computational domains of other parallel reduction problems.
This work also introduces the use of multi-constraint hypergraph
partitioning, for solving the decomposition problem. The proposed
method explicitly models the minimization of communication vol-
ume while enforcing the upper bound of p + q � 2 on the maxi-
mum number of messages handled by a single processor, for a par-
allel system with P = p �q processors. Experimental results on
a wide range of realistic sparse matrices confirm the validity of the
proposed methods, by achieving up to 25 percent better partitions
than the standard graph model, in terms of total communication vol-
ume, and 59 percent better partitions in terms of number of mes-
sages, on the overall average.

1. INTRODUCTION
The standard graph partitioning approachhas been widely used to

decompose irregular domains for the sake of efficient parallel exe-
cution [2, 3, 16, 17, 19, 22, 23, 25, 30, 34]. In our previous works [6,
7, 9], we introduced two computational hypergraph models for the
decomposition problems. In the mentioned works, the decomposi-
tion problem is modeled as a mincut graph/hypergraph partitioning
problem, such that minimization of cut-cost targeted to the mini-
mization of total communication volume. However, for architec-
tures with high message latency, minization of number of messages
is also important. In this work, we propose a two-phase method
which employs multi-constraint hypergraph partitioning. The pro-
posed method naturally maintains an upper bound for the maximum
number of messages handled by a single processor while minimiz-
ing the total communicationvolume. This upper bound is p+ q � 2
messages per processor for a parallel system with P = p�q pro-
cessors.
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Partitioning of irregularly sparse matrices for repeated
sparse-matrix vector multiplication (SpMxV) is an important appli-
cation for the decomposition methods. Repeated SpMxV y = Ax
that involves large, sparse, structurally symmetric or nonsymmetric
square matrix A is the kernel operation in iterative solvers. These
algorithms also involve linear operations on dense vectors. For ef-
ficient parallelization of these iterative algorithms, nonzeros of ma-
trix A should be partitioned among processors in such a way that
communication overhead is kept low while maintaining computa-
tional load balance. In order to avoid the communication of vector
components during linear vector operations, a symmetric partition-
ing scheme is adopted. That is, all vectors (including x and y vec-
tors) used in the solver are divided conformally.

Parallel SpMxV is one of the basic parallel reduction algorithms.
Elements of x vector are the inputs of the reduction and elements of
y vector are the outputs of the reduction. Matrix A corresponds to
the mapping matrix from input elements to output elements. Hence,
any technique used in sparse matrix partitioning is also applicable to
other reduction problems. For example, analysis of large scientific
datasets involves reduction operations. Vast amounts of datasets are
being continuously produced by advanced sensors attached to in-
struments; such as earth-orbiting satellites [31, 32, 37] and medical
instruments [1]. In addition, long running scientific simulations that
periodically generate snapshots of their time dependent states [11,
29, 36] are generating unprecedently large volumes of data for sci-
entists. Typical analysis of such datasets usually involves subseting
(to extract the data of interest from all the data available), and pro-
cessingand transforming it into a new data product. The type of data
processing usually results in a significant reduction in data volume.
Both the existing graph models and our hypergraph models can be
used to model those reduction operations as it has been used in Ac-
tive Data Repository (ADR) [12, 24]. ADR is a framework devel-
oped at University of Maryland that provides support for integrat-
ing storage, retrieval and processing of multi-dimensional datasets
on distributed memory machines. A variant of our fine-grain hyper-
graph model [5, 9] has been used in the query scheduling phase of
ADR to solve decomposition (workload distribution) problem [13].
Hence the proposed two-phase coarse-grain decomposition method
is also applicable to the reduction problems together with its nice
number of message feature.

The application of the proposed method to the sparse-matrix par-
titioning problem results in 2D checkerboard partitioning.
The nice property of this partitioning schemeis that it bounds the the
maximum number of messageshandledby a processor to p+ q � 2:
The parallel SpMxV algorithms proposedby Hendricksonet al. [18]
and Lewis and van de Geijn [28] for 2D checkerboard partitioning
are typically suitable for densematrices or sparsematrices with struc-



tured nonzero patterns that are difficult to exploit. The 2D checker-
board partitioning schemes proposed in the literature [18, 27, 28,
33] do not exploit sparsity for reducing communication volume, and
hence, the total communication volume may be as high as (p+q�
2)m for an m�m matrix. In this work, we propose a two-phase
checkerboard partitioning method based on multi-constraint hyper-
graph partitioning for minimizing communication volume while
maintaining computational load balance.

2. PRELIMINARIES
A hypergraph H=(V;N ) is defined as a set of vertices V and a

set of nets (hyperedges) N among those vertices. Every net n j 2
N is a subset of vertices, i.e., nj � V . The vertices in a net nj
are called its pins. Weights can be associated with the vertices of a
hypergraph. Let wi denote the weight of vertex vi2V .

A K-way vertex partition � = fV1;V2; : : : ;VKg of H is said
to be balanced if each part Vk satisfies the balance criterion

Wk �Wavg(1 + "); for k = 1; 2; : : : ;K: (1)

In (1), weight Wk of a part Vk is defined as the sum of the weights
of the vertices in that part (i.e. Wk =

P
vi2Vk

wi ),
Wavg=(

P
vi2V

wi)=K denotes the weight of each part under the
perfect load balance condition, and " represents the predetermined
maximum imbalance ratio allowed.

In a partition � of H , a net that has at least one pin (vertex) in a
part is said to connect that part. Connectivity set �j of a net nj is
defined as the set of parts connectedby n j . Connectivity �j= j�jj
of a net nj denotes the number of parts connected by n j . A net
nj is said to be cut (external ) if it connects more than one part (i.e.
�j > 1 ), and uncut (internal ) otherwise (i.e. �j = 1 ). The set of
external nets of a partition � is denoted as NE . There are various
cutsize definitions for representing the cost of a partition � . Two
relevant definitions are:

cutsize(�) = jNE j (2)

cutsize(�) =
X

nj2NE

(�j � 1): (3)

Eq. 2, the cutsize is equal to the number of cut nets. In Eq. 3, each
cut net nj contributes �j � 1 to the cutsize. Hence, the hyper-
graph partitioning problem can be defined as the task of dividing
a hypergraph into two or more parts such that the cutsize is mini-
mized, while a given balance criterion (1) among the part weights
is maintained. The hypergraph partitioning problem is known to be
NP-hard [26].

3. COARSE-GRAIN DECOMPOSITION
Row and column coherences are important factors in sparse ma-

trix partitioning for parallel SpMxV. Column coherencerefers to the
fact that nonzeroes on the same column incur the need for the same
x -vector entry. Row coherence refer to the fact that nonzeroes on
the same row incur the contribution of scalar multiplication results
to the same y -vector entry. In a partitioning, disturbing column co-
herence incurs expand communication of x -vector entries, whereas
disturbing row coherency incurs fold communication of partial y -
vector results. Here, expand communication of an x-vector entry
xj refers to the multicast operation where a processor, the one that
owns the updated xj value, sends (i.e., expands) the same xj value
to all processors that have nonzeros at column j . Fold communi-
cation of partial y-vector results refers to the multinode accumula-
tion operation on local, sparse y vectors computed by the proces-
sors. That is, every processor having at least one nonezero at row i

generates a partial yi result after local SpMxV computations, and
these processors send their partial yi results to the processor that
owns yi for a local accumulation operation to obtain the final yi re-
sult. Note that 1D rowwise partitioning incurs only expand commu-
nication, becauseit respects row coherenceby assigning entire rows
to processors while disturbing column coherence. In a dual man-
ner, 1D columnwise partitioning incurs only fold communication,
because it respects column coherence by assigning entire columns
to processors while disturbing row coherence. So in 1D matrix par-
titioning, the number of messages handled by a processor may be as
high as P�1 , for a parallel system with P processors. The worst-
case total communication volume is (P �1)m words for an m�m
matrix, and this worst-case occurs when each row (column) stripe
has at least one nonzero in each column (row) in rowwise (column-
wise) partitioning. The standard graph-partitioning approach used
for 1D matrix partitioning has some flaws such that the cutsize met-
ric doesn’t reflect the actual communication volume and it is
restricted to symmetric matrices. Our previous hypergraph parti-
tioning models [6, 7] correctly minimizes the communication vol-
ume in 1D matrix partitioning. Other recently proposed alternative
models for 1D matrix partitioning were discussed in the excellent
survey by Hendrickson and Kolda [17].

In a recent work [5, 9], we have investigated 2D fine-grain sparse-
matrix partitioning which is overlooked in the literature. In this
scheme, nonzeroes are allowed to be assigned individually to pro-
cessors. Since neither row coherence nor column coherence is en-
forced, this scheme may incur both expand and fold operations so
that the number of messages handled by a processor may be as high
as 2(P�1) . The worst-case communication volume is 2(P�1)m
words in total. We proposed a fine-grain hypergraph-partitioning
model [5, 9] which correctly minimizes total communication vol-
ume in this highly scalable 2D partitioning scheme. Experimental
results showed that this 2D fine-grain partitioning model
achieves drastic reduction in communication volume compared to
1D partitioning at the expense of increase in the number of total
messages. This experimental finding is expected, because the 2D
fine-grain model has a higher degree of freedom than the 1D mod-
els in minimizing communication volume since it does not enforce
any coherence.

The 2D checkerboard partitioning scheme widely used for paral-
lel SpMxV can be considered as a trade-off between 1D partition-
ing and 2D fine-grain partitioning schemes. This scheme respects
both row and column coherences in a coarse level assuming a 2D
processor mesh organization. It respects row coherence by assign-
ing entire matrix rows to the processors in the same row of the pro-
cessor mesh. It respects column coherence by assigning entire ma-
trix columns to the processors in the same column of the processor
mesh. Although both coherences are disturbed in processor level,
the disturbances are confined to the processors of the same rows
and columns. So, this scheme confines the expand operations to the
columns and fold operations to the rows of the processor mesh. In
this way, it reduces the maximum number of messages handled by
a processor to p+ q � 2 for a p�q mesh of processors. The total
communication volume may be as high as (p + q � 2)m , and this
worst-case occurs when each row and column of each submatrix has
at least one nonzero. The 2D checkerboard partitioning schemes
proposed in the literature [18, 27, 28, 33] mainly aim at load bal-
ancing and they do not exploit sparsity for reducing communication
volume.

Here, we propose a novel hypergraph-partitioning approach for
minimizing total communication volume while maintaining com-
putational load balance in checkerboard partitioning. The proposed
method is a two-phase method, in which each phase models either



the expand-communicationvolume or fold-communication volume.
Therefore, we have two alternative schemes for the proposed ap-
proach. For the sake of simplicity in the presentation we will dis-
cuss only one scheme, the one which models the volume of expand
communication in the first phase and then the volume of fold com-
munication in the second phase. A dual discussion holds for the
other scheme. We will discuss the checkerboard partitioning of an
m�m square matrix A on a p�q processor mesh.

In the first phase, we perform a p -way 1D rowwise partitioning
of matrix A using the column-net hypergraph-partitioning
model proposed in our previous works [6, 7]. In the column-net hy-
pergraph representation HR=(VR;NC) of matrix A , there exist
one vertex vi 2 VR and one net nj 2 NC for each row ri and
column cj , respectively. Net nj � VR contains the vertices cor-
responding to the rows which have a nonzero entry in column c j .
That is, vi 2 nj if and only if aij 6= 0 . Weight wi of a vertex
vi2 VR is set equal to the total number of nonzeroes in row ri . As
we discussed in [6, 7], by partitioning the column-net hypergraph
into equally weighted vertex parts (maintaining balance condition
in Eq. 1) so that nets are split among as few parts as possible (min-
imizing cutsize metric in Eq. 3), the model correctly minimizes to-
tal volume of expand communication while maintaining computa-
tional load balance in rowwise partitioning.

A p -way partition �R = fV1; : : : ;Vpg of HR induces a p -
way rowwise partitioning fR1; : : : ;Rpg of matrix A , where R�

denotes the set of rows corresponding to V� for �=1; 2; : : : ; p .
Without loss of generality we assumethat the set R� of matrix rows
is assigned to row � of processor mesh for �=1; 2; : : : ; p . This
rowwise partitioning also corresponds to assigning a m��m row-
stripe Ar

� to row � of processor mesh, where m�= jV�j . In a row-
wise partitioning, a column is said to be internal if all of its nonze-
roes are confined to a single row stripe. A column is said to be ex-
ternal if it has nonzeroes in the rows of at least two row stripes. An
external column cj which has nonzeroes in �j row stripes will in-
cur the expand communication of xj to �j � 1 processors along
a column of the processor mesh if all nonzeroes of cj are assigned
to the same processor-column. Columnwise partitioning to be per-
formed in the second phase satisfies this coherence.

In the second phase, we perform a q -way multi-constraint hy-
pergraph partitioning on the row-net representation of matrix A for
columnwise partitioning. In the row-net hypergraph representation
HC=(VC;NR) , there exist one vertex vi 2 VC and one net nj 2
NR for each column ci and row rj , respectively. Net nj � VC
contains the vertices corresponding to the columns which have a
nonzero entry in row rj . That is, vi 2 nj if and only if aji 6= 0 .
As we discussed in [6, 7], minimizing the cutsize according to Eq. 3
corresponds to minimizing the total volume of fold communication
of partial yj results that need to be accumulated. A q -way partition
�C of HC induces a q -way columnwise partitioning fC1; : : : ;Cqg
of matrix A , where C� denotes the set of columns assigned to pro-
cessor column � , for �=1; 2; : : : ; q . So, (�R;�C) determines a
checkerboard partition, where R� and C� denote the sets of rows
and columns assigned to processor P�� at row � and column �
of the processor mesh. That is, processor P�� will own nonzero
aij 6=0 of matrix A if ri 2 R� and cj 2 C� . For computational
load balancing processors should be assigned roughly equal number
of nonzeroes.

We introduce the multi-constraint hypergraph-partitioning con-
cept for handling the load-balancing problem in our two-phase ap-
proach. The notion of multi-constraint and multi-objective parti-
tioning has recently become popular in graph partitioning [21, 35]
for the parallelization of multi-physics and multi-phase applications.
In these applications, each constraint effectively corresponds to the

computational load of the vertex in a different phase of the target
parallel algorithm. Hence, maintaining balance on each constraint
corresponds to maintaining load balance in each phase of the paral-
lel algorithm. For our specific application, multiple weights of the
vertices do not correspond to the weights of different phases. In fact
they represent the computational loads that will be executed concur-
rently.

In our model, the rowwise partitioning �R = fR1; : : : ;Rpg
performed in the first phase already produces row stripes with
roughly equal number of nonzeroes. In the second phase, each ver-
tex vi of HC is assigned p weights: wi(�) , for �=1; 2; : : : ; p .
Here, wi(�) is set equal to the number of nonzeroes of column c i
in row-stripe Ar

� . Note that all internal columns in the rowwise par-
titioning will have only one nonzero weight, whereas only external
columns will have multiple nonzero weights. In any case, the sum
of the p weights of each vertex will be equal to the total number
of nonzeroes on the respective column. So, the balance constraint
given in Eq. 1 is replaced with p balance constraints that should be
maintained simultaneously, i.e.,

W�(�) �Wavg (1 + ") ; � = 1; 2; : : : ; q (4)

for each � = 1; 2; : : : ; p:

Here, W�(�)=
P

vi2V�
wi(�) is the weight of part V� of �C on

the � -th constraint. Note that W�(�) effectively denotes the num-
ber of nonzeroes assigned to processor P�� in (�R;�C) . Hence,
in the second phase, maintaining the balance on each weight con-
straint during partitioning HC corresponds to maintaining compu-
tational load balance on the processors of each row of the 2D pro-
cessor mesh.

Figures 1–3 illustrate the basic steps of our method for 2� 2
checkerboard partitioning of a sample matrix. We labeled the ver-
tices and nets of hypergraphs with letters “r” and “c” to denote row
and column of a matrix, for simplicity in the presentation. In the
hypergraph drawings, circles represent vertices, whereas dots repre-
sent nets. Figure 1(b) displays the column-net hypergraph represen-
tation HR of a sample matrix A given in Figure 1(a). It also shows
a 2-way partition �R of HR . Figure 2(b) shows the 2-way row-
wise partitioning of sample matrix A induced by �R . Figure 2(b)
displays the row-net hypergraph representation HC of matrix A . It
also shows a 2-way multi-constraint partition �C of HR . In Fig. 2,
w9(1) = 4 and w9(2) = 0 for internal column c9 of row stripe
R1 , whereas w5(1) = 4 and w5(2) = 2 for external column c5 .
Figure 3 displays the 2�2 checkerboard partitioning induced by
(�R;�C) .

4. EXPERIMENTAL RESULTS
We havetested the validity of the proposed2D partitioning method

on various realistic sparse test matrices arising in different applica-
tion domains [4, 10, 14, 15]. Table 1 illustrates the properties of the
test matrices listed in the order of increasing number of nonzeros.
The 2D partitioning results were obtained by running our multilevel
hypergraph partitioning tool PaToH [8] on the hypergraphs. The
2D partitioning results were compared with the 1D partitionings ob-
tained by running MeTiS [20] using the standard graph models, and
PaToH using the 1D column/row-net hypergraph model presented
in [6, 7]. For a specific P value, P -way partitioning of a test matrix
constitutes a partitioning instance. For 2D partitioning instances,
without loss of generality we selected p = q =

p
P . MeTiS and

PaToH were run 50 times starting from different random seeds for
each partitioning instance and average performance results are dis-
played in Figure 4. Communication volume values (in terms of the



2

3

4

5

6

7

8

9

10

1

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

c1

c2

c5

c4

c3

c16
c15

c14

c13

c12

c11

c10

c9

c8

c7

c6

r10

r1

r13

r7

r9

r5

r2

r15

r14

r6

r3

r16

r11

r12

r8
r4

R1
R2

(a) (b)
Figure 1: (a) A 16�16 sample nonsymmetric matrix A . (b) Phase 1: 2-way partitioning �R of column-net hypergraphrepresentation
HR of A .

13

5

1

6

14

11

3

2

15

10

7

9

8

16

12

4

1
0

1
3

5 1 6
1
4

1
1

32
1
5

7 9 8
1
6

1
2

4

P11 & P12

P21 & P22

R1

R2

r4r3

r16

r14
r12

r11

r8

r6

c14

c6

c3

c16

c11

c12

c8

c4

C2

r1

r2

r5

r15

r13

r10

r9

r7

c10

c1

c13

c7
c9

c5

c2

c15

C1

W1(1) = 12
W1(2) = 12

W2(1) = 11
W2(2) = 12

(a) (b)
Figure 2: (a) Phase 1: 2-way rowwise partitioning of matrix A induced by �R . (b) Phase 2: 2-way multi-constraint partitioning �C
of row-net hypergraph representation HC of A .

13

5

1

6

14

11

3

2

15

10

7

9

8

16

12

4

1
0

1
3

5 1 6
1
4

1
1

3 2
1
5

7 9 8
1
6

1
2

4

P11, W11=12

P12, W12=11

P21, W21=12

P22, W22=12

Figure 3: Coarse-grain 4-way partitioning of matrix A induced by (�R;�C) .



Table 1: Properties of test matrices
number of nonzeros

number of per row/col
name rows/cols total min max avg
sherman3 5005 20033 1 7 4.00
bcspwr10 5300 21842 2 14 4.12
ken-11 14694 82454 2 243 5.61
nl 7039 105089 1 361 14.93
ken-13 28632 161804 2 339 5.65
cq9 9278 221590 1 702 23.88
co9 10789 249205 1 707 23.10
pltexpA4-6 26894 269736 5 204 10.03
vibrobox 12328 342828 9 121 27.81
cre-d 8926 372266 1 845 41.71
cre-b 9648 398806 1 904 41.34
world 34506 582064 1 972 16.87
mod2 34774 604910 1 941 17.40
finan512 74752 615774 3 1449 8.24

number of words transmitted) are scaled by the number of
rows/columns of the respective test matrices. Average and maxi-
mum number of messages handled by a single processor are also
displayed in this figure. The percent load imbalance values are be-
low 3% for all partitioning results displayed in these figures, where
percent imbalance ratio is definedas 100� (Wmax �Wavg)=Wavg .
Figure 4(d) displays the partitioning times on a workstation equipped
with a 133 MHz PowerPC processor with 64 Mbytes of memory.

In terms of total communication volume, Figure 4(a), the pro-
posed method produces better partitions than the standard graph
model on 29 instances out of 42 instances. On the average, the pro-
posed method produces 23%, 25% and 27% better partitions than
the standard graph model on 16, 32 and 64 processors. The pro-
posed method produces comparable results with the 1D hypergraph
model in terms of communication volume.

In the proposed method, the upper bound on the maximum num-
ber of messageshandled by a processor is 6, 10, and 14 for a parallel
system with 16, 32, and 64 processors, respectively. As seen in Fig-
ure 4(b), these upper bound values are reached on 31 instances out
of 42 instances. In terms of maximum number of messages handled
by a single processor, the proposedmethod producesdrastically bet-
ter partitions than the 1D graph and hypergraph models on every in-
stance. On the average, it produces 56%, 62% and 72% better par-
titions than the 1D graph model on 16, 32 and 64 processors. These
relative performance figures slightly reduce to 55%, 60% and 69%,
respectively, for the 1D hypergraph model. As expected the perfor-
mance gap increases rapidly with increasing number of processors
in favor of the proposed method.

In terms of average number of messages handled by a single pro-
cessor, Figure 4(c), the proposed method produces better partitions
than the 1D graph model on every instance except 32- and 64- way
partitionings of BCSPWR10 matrix. It producesbetter partitions than
the 1D hypergraph model on 33 instances out of 42 instances. On
the average, the proposed coarse-grain method produces54%, 57%,
and 62% better partitions than the 1D graph model on 16, 32, and 64
processors. These relative performance figures considerably reduce
to 44%, 42% and 46%, respectively, for the 1D hypergraph model.
Note that these relative performance figures also show the relative
figures on the total number of messages.

The proposed method is approximately 3 times slower than the
standard graph model, on the overall average (Figure 4(d)). The ex-
ecution times of 1D hypergraph model and coarse-grain method are
almost the same. For P -way partitioning, 1D hypergraph model
necessitates P -way partitioning of the hypergraph representation
of the sparse matrix. However, the proposed method requires two

p
P -way partitionings of the hypergraph representations of the

sparse matrix. Since the current PaToH implementations achieve
multi-way partitioning by recursive partitioning, two

p
P -way par-

titionings is usually faster than one P -way partitioning, even though
one of the two

p
P -way partitionings is a multi-constraint partition-

ing.

5. CONCLUSION
A coarse-grain decomposition method was proposed for 2D par-

titioning of sparse matrices which has a better upper bound on the
maximum number of messages handled by a single processor than
the existing methods. The proposed model reduces the 2D matrix
partitioning problem to a multi-constraint hypergraph partitioning
problem so that partitioning objectives correspond to minimizing
communication volume while maintaining load balance during re-
peated matrix-vector multiplication. The performance of the pro-
posed 2D partitioning model was tested against 1D partitioning
through graph and hypergraph models on a wide range of realis-
tic sparse matrices. On the average, the 2D partitionings achieved
about 59 and 44 percent better decompositions than 1D graph and
hypergraph models, respectively, in the number of communications
required for a single parallel matrix-vector multiplication.
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[6] U. V. Çatalyürek and C. Aykanat. Decomposing irregularly
sparse matrices for parallel matrix-vector multiplications.
Lecture Notes in Computer Science, 1117:75–86, 1996.
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[9] U. V. Çatalyürek and C. Aykanat. A fine-grain hypergraph
model for 2D decomposition of sparse matrices. In
Proceedings of 15th International Parallel and Distributed
Processing Symposium (IPDPS), San Francisco, CA, April
2001.

[10] I. O. Center. Linear programming problems.
ftp://col.biz.uiowa.edu:pub/testprob/lp/gondzio.



16-way - Communication Volume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sh
er

m
an

3

BCSPW
R10

ke
n-

11 nl

ke
n-

13 cq
9

co
9

plt
ex

pA
4_

6

vib
ro

bo
x

cr
e-

d
cr

e-
b

wor
ld

m
od

2

fin
an

51
2

T
o

ta
lC

o
m

m
.V

o
l.

(w
o

rd
s/

#r
o

w
s)

graph
1D hypergraph
2D hypegraph

32-way - Communication Volume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

sh
er

m
an

3

BCSPW
R10

ke
n-

11 nl

ke
n-

13 cq
9

co
9

plt
ex

pA
4_

6

vib
ro

bo
x

cr
e-

d
cr

e-
b

wor
ld

m
od

2

fin
an

51
2

T
o

ta
lC

o
m

m
.V

o
l.

(w
o

rd
s/

#r
o

w
s)

graph
1D hypergraph
2D hypegraph

64-way - Communication Volume

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

sh
er

m
an

3

BCSPW
R10

ke
n-

11 nl

ke
n-

13 cq
9

co
9

plt
ex

pA
4_

6

vib
ro

bo
x

cr
e-

d
cr

e-
b

wor
ld

m
od

2

fin
an

51
2

T
o

ta
lC

o
m

m
.V

o
l.

(w
o

rd
s/

#r
o

w
s)

graph
1D hypergraph
2D hypegraph

(a) Total communication volume scaled by #rows/columns
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(b) Maximum number of messages handled by a single processor
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(c) Average number of messages handled by a processor
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Figure 4: Average communication requirements of the proposed coarse-grain method for 2D partitioning and the existing 1D parti-
tioning models.



[11] C. F. Cerco and T. Cole. User’s guide to the CE-QUAL-ICM
three-dimensional eutrophication model, release version 1.0.
Technical Report EL-95-15, US Army Corps of Engineers
Water Experiment Station, Vicksburg, MS, 1995.

[12] C. Chang, A. Acharya, A. Sussman, and J. Saltz. T2: A
customizable parallel database for multi-dimensional data.
ACM SIGMOD Record, 27(1):58–66, Mar. 1998.

[13] C. Chang, T. Kurc, A. Sussman, U. V. Çatalyürek, and
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