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Figure 1: The ElectroLens user interface (UI) visualizing the electron cloud of CH3NO2 molecule. The UI has two main parts: 3D
viewer(s) on the left, and 2D plots on the right with option boxes in each view for customization. (A) The 3D viewer for Cartesian
space. ElectroLens uses a “point cloud” to mimic the electron cloud, where the density of points corresponds to the density of
electron cloud, and the color corresponds to energy density in this case. ElectroLens utilizes the ball-and-stick model to visualize
atoms, where different atom types are denoted by white (hydrogen), grey (carbon), blue (nitrogen), and red (oxygen) spheres. (B)
2D plots for exploring and plotting additional features. The upper plot is the correlation plot used to identify the potentially interesting
combinations of features. The plot below is a scatter plot of two features (in log-scale), where the color codes the number of data
points represented. (C) Selecting parts on the scatter plot causes the corresponding points in 3D viewer and other scatter plots to
be highlighted. This case illustrates the connection between the features (right) and the chemical concept of a C-N bond (left).

ABSTRACT

In recent years, machine learning (ML) has gained significant pop-
ularity in the field of chemical informatics and electronic structure
theory. These techniques often require researchers to engineer ab-
stract “features” that encode chemical concepts into a mathematical
form compatible with the input to machine-learning models. How-
ever, there is no existing tool to connect these abstract features back
to the actual chemical system, making it difficult to diagnose fail-
ures and to build intuition about the meaning of the features. We
present ElectroLens, a new visualization tool for high-dimensional
spatially-resolved features to tackle this problem. The tool visualizes
high-dimensional data sets for atomistic and electron environment
features by a series of linked 3D views and 2D plots. The tool is
able to connect different derived features and their corresponding
regions in 3D via interactive selection. It is built to be scalable, and
integrate with existing infrastructure.

Index Terms: Molecular Visualization—Visual Design—Co-
ordinated and Multiple Views—Interaction Design

*e-mail: {xlei38 | fredhohman | polo | ajm}@gatech.edu

1 INTRODUCTION

Machine learning (ML) has seen lots of successful applications in
the fields of chemical informatics and electronic structure theory in
recent years [10, 18]. Scientists have applied various fingerprinting
approaches to describe atoms or their associated electronic environ-
ments in molecular systems, and trained ML models that connects
these high-dimensional feature vectors to some properties of interest.

One challenge that emerged from these studies is the lack of
connection between these ML inputs and the underlying molecular
systems. More specifically, with a set of feature vectors, there are
no current tools for scientists to easily locate the corresponding
atoms or electronic environments in the molecular systems. This
is an issue for chemists, who typically develop strong “chemical
intuition” through years of research and development experience.
This intuition is based on the location and context of atoms or
electrons in molecular systems, not on the derived mathematical
features of ML models. The lack of connection prevents chemists
from understanding the features intuitively. This makes it difficult
for them to deduce the reason behind unsuccessful fingerprinting
systems, or to improve them based on their chemical knowledge.
Currently, researchers work around this mostly by trial and error:
keep trying new fingerprinting system until the accuracy of the model
provides indirect evidence that it works. While some systematic
approaches have emerged [15], they are still based on enumeration of
many possible candidates and do not enable chemists to apply their
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domain knowledge to select or analyze the resulting fingerprints.
For example, a researcher might want to select features that dif-

ferentiate the electronic structure of a bond between carbon (C) and
nitrogen (N). This could be achieved by analyzing the electronic
structure of a CH3NO2 molecule as shown on the left of Fig. 1 along
with features derived using convolutional kernels [20] (right). By
identifying and selecting sub-sets of these features the researcher
can learn that when the combination of two features is within certain
window (shown by the selection in the bottom right) the C-N bond
is selected. This enables the researcher to identify this as a critical
fingerprint in subsequent machine-learning models.

Visualization has strong potential to solve this problem, enabling
users to not only look at the high-dimensional feature vectors, but
also establish the connections between them and their corresponding
regions in the actual system. The connection will help researchers
link the features to their chemical domain knowledge for easier
understanding. This is highlighted by the example above, where a
researcher can use visualization to establish an connection between
the numerical range of certain features and chemical concepts like
C-N bonding, which can facilitate feature engineering and model
improvement. Moreover, by considering the prediction accuracy of
a ML model as an additional feature, the same tool can be used to
directly visualize the performance of the model, identify problematic
regions, and improve the model accordingly.

Contributions. In this study, we work with experts in ML models
for electronic structure theory and contribute:

• ElectroLens, a 3D visualization tool for high-dimensional
spatially-resolved features associated with atoms and elec-
tronic environments of molecular systems. The UI of Elec-
troLens, shown in Fig. 1, consists of two parts: the 3D view(s)
(left) corresponding to Cartesian space, and 2D plots (right)
corresponding to projections of the feature space.

• Interactive visualization design that displays high dimen-
sional data through a series of 3D and 2D plots and connects
them via interactive selection (Sect. 4). ElectroLens allows the
user to make selections on the 2D plots, and the corresponding
regions in real space will be highlighted in the 3D view.

• Scalable implementation that can process and visualize more
than one million data points at a high frame rate of 60 FPS, on
a commodity laptop computer.

• An open-source desktop application with Python bindings
to the Atomic Simulation Environment (ASE) library [19]
that is commonly used by scientists for managing atom-
istic simulations. ElectroLens is currently hosted on Github
at medford-group.github.io/ElectroLens/. Tutorials
and documentation are provided on the website.

• Usage scenarios illustrate how ElectroLens helped to decipher
new descriptor systems and ML model performance in our
research on ML models for electronic and atomistic structures.

2 BACKGROUND

Fingerprinting approaches are used to construct descriptive features
to capture different aspects of molecular systems in the communities
of ML electronic structure theory and chemical informatics. One
common approach is to fingerprint molecular structures, leading to
atom-centered features that capture the local chemical environment
of a specific atom. There are numerous schemes including overlap
integrals of Gaussians or atomic orbitals [4, 8], Zernike polynomi-
als [17], and others [11]. The result of these schemes is a high
(typically >10) dimensional vector that describes each atom, which
can be described as vectors corresponding to points on a irregular
grid. An alternative approach is to examine the electronic structure
surrounding the atoms instead of the atoms themselves. One strategy
to achieve this is to treat the electron cloud as a voxelized 3D image,
and to construct features to describe each voxel. For example, the
recently-developed MCSH descriptors work in this way [20]. In this

case, the resulting feature vectors correspond to points on a regular
grid. In both cases the problem involves high-dimensional features
that correspond to points in 3D Cartesian space.

The existing fingerprinting systems have been the foundation of
numerous successful ML models for predicting the energies from
atomic configurations [7, 10], or energy contributions from local
electronic structure [20]. However, there is a significant challenge
in understanding the physical or chemical meaning of the features
which are typically based on mathematical transformations rather
than physical derivations. This problem will likely increase with the
rise of deep learning techniques where the features are determined
by the algorithm, making it even harder to assign specific meaning.
Visualization provides a promising route to gain intuition about big,
high-dimensional data sets and corresponding ML models [13, 22].
While there are numerous software packages available for visual-
izing atomistic data sets [2, 3, 9, 14, 23–25, 28], they have all been
developed with chemical properties in mind, and are optimized for
visualizing chemical concepts such as atom types, chemical bonds,
and electron density. However, none are optimized to visualize the
high-dimensional features used in ML models. Most programs are
limited to visualizing a maximum of 2 features other than position
(typically element type and radius) with a single 3D view, and of-
ten become sluggish when visualizing more than ten thousand data
points. The data sizes required for ML models typically exceed this
limit in terms of number of data points and dimensions per point.

3 DESIGN CHALLENGE

To establish an intuitive link between feature vectors and actual
systems, we have worked with domain experts to identify six design
challenges that are currently not addressed by other tools in the
electronic structure theory or chemical informatics communities.
C1 Visualizing high-dimensional feature vectors. The typical

fingerprinting systems used in research generates tens or even
hundreds of features per atom or grid point. Visualization
of the distribution and correlations between these features is
crucial to the understanding of their meaning.

C2 Connecting features and corresponding Cartesian space. It
is critical to visualize the features in their corresponding chem-
ical context. A seamless connection between these alternative
representations of the system is important to grasp the mean-
ings of the features. Unfortunately, there is no existing tool in
the community that establishes these connections visually.

C3 Comparing features across different systems. Assessing the
generality of a given relationship between a feature vector and
a chemical system requires comparison of multiple systems si-
multaneously. For example, if a feature is found to correspond
to the C=O bonding region in a CO2 molecule, it would be of
interest to know if the same feature also corresponds to the
C=O bond in a similar molecule such as HCOOH. However,
most existing visualization tools for atomic/electronic structure
focus on visualizing a single system at a time.

C4 Visualizing atomistic and electronic structures simultane-
ously. The atomic structure and electronic structure are inti-
mately linked, but are represented with different data structures:
irregular grids for atoms, and regular grids for electronic en-
vironments. The ability to simultaneously visualize the two
data types, along with features that describe environments
within these two related structures, will provide a new route to
building intuitive connections between the two representations.

C5 Handling large datasets. Datasets used for ML training are
often very large, containing millions of data points with tens of
dimensions or more. Most tools for visualizing atomistic and
electronic structure data do not scale well to datasets of extreme
size. Building intuition requires interactive visualization of
such large datasets, so fast rendering speed is critical.

C6 Integrating with existing infrastructure. Simulations of
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Figure 2: ElectroLens simultaneous viewing atomistic (spheres) and
electronic environments (point cloud) for multiple systems. The chemi-
cal systems shown are carbon dioxide (CO2) (top), nitrous oxide (N2O)
(middle), and formic acid (HCOOH) (bottom). The 2D plots show the
error of an ML model vs. electron density (top) and the first derivative
of the electron density vs. electron density (bottom). Features in the
2D plots correspond to all 3 systems.

Figure 3: The same plots as Fig. 2 with selection. The top “tail” of the
error distribution vs. electron density plot is selected, causing the O
core regions to be highlighted in the 3D views. The top “tail” of the
derivative plot is also highlighted as a result, illustrating a connection
between the error and the density derivative.

atomistic and electronic structure involve a wide range of tools
and software packages, including molecular dynamics, density
functional theory, and wavefunction theory codes. These tools
have a range of input/output data structures, so it is impor-
tant for visualization tools to integrate with existing software
packages that already act as API’s for integrating the tools.

4 ELECTROLENS

4.1 Main Views and Interactions
ElectroLens is written in JavaScript with the three.js library. The
WebGL-based technology is lightweight and enables high frame-
rate (60fps) rendering of millions of points with a GPU [C5]. It
is wrapped into a standalone desktop app that supports Windows,
MacOS and Linux with the Electron JS framework [1]. Memory
usage is optimized by adapting an efficient data structure where each
data point is only stored once and shared between multiple plots
without redundant copies. ElectroLens is structured to have two
main views: the 3D view on the left, and the 2D plots on the right
(Fig. 1). These views are dynamically linked, allowing selections in
the 2D plots to highlight corresponding regions in the 3D view.

3D View. The 3D view corresponds to physical systems in
Cartesian space. For atomistic simulations, the physical informa-
tion can take two forms: atom positions (irregular grids) or elec-
tron/wavefunction densities (regular grids). ElectroLens can visual-
ize these distinct data types separately or simultaneously, as shown
in Figs. 2-4. For the atomic features, ElectroLens uses the common
“ball-and-stick” model to display the location of the atoms and bonds.
The size and color of the “balls” can be used to code 2 features of

interest, which are assumed to be the atomic type by default, but
could be other features. For the electronic environment features,
ElectroLens renders this data as a point cloud to mimic the electron
cloud, where the density of points corresponds to the density of
electron cloud, and the color can be used to encode an extra feature.
The view is highly customizable for users to adjust visualization and
highlight regions of interest. For example, users can adjust the size,
transparency, color scale, color map, or density of the point cloud
with the option box of the view. On the other hand, one could also
change the resolution, color, size of the ball-and-stick model and
more as well. The view also supports “slicing”, allowing users to
look at cross sections of the electron density.

2D Plots and Selection. The 3D view is limited to visualizing 2
spatially-resolved features through double-encoding on size/color
(ball and stick) or density/color (point clouds). To display additional
features without loss of information [C1], a series of connected 2D
plots are used. Three kinds of 2D plots are implemented: scatter
plots, correlation plots and dimension-reduction plots. The scatter
plots are heat maps where two features of choice are plotted and the
color of the heat map corresponds to the amount of points at a given
region of feature space. The correlation plot is a visual representa-
tion of the correlation matrix of the features. This provides a fast
way to explore the high-dimensional feature space and identify inter-
esting combinations, since feature combinations with low correlation
tend to contain the most information. The dimension-reduction plots
provide an alternate strategy for navigating the high-dimensional
space. They utilize principal component analyis (PCA) reduce the
dimensionality of the features and plot the resulting projection using
a scatter plot. These 2D plots can be added to the right-hand view
on the fly with common transformations like “log10” for better vi-
sualization. Users can also choose to simultaneously plot features
corresponding to atomic and electronic environments to assess con-
nections between the two [C4]. One key functionality of the scatter
plots and dimension-reduction plots is the ability to select regions in
the 2D plots and see how these features are localized in 3D Cartesian
space [C2], as highlighted in Fig. 1. ElectroLens supports exporting
these sub-sets of points for further analysis, as well as saving specific
views that can be loaded in later or shared with other users. Users
can customize the 2D plots (color map, scatter size, etc.) as well.

Multiple 3D System Views. ElectroLens allows user to visualize
and compare an arbitrary number of systems simultaneously, and
use the 2D plots to plot the pooled data across all systems (Fig. 2)
to understand the generality of connections between feature vectors
and chemical concepts [C3 ]. In other words, points in the 2D plots
may correspond to regions in multiple systems. When the points are
selected in the 2D view, the corresponding regions in all systems
where the points appear will be highlighted, as illustrated in Fig. 3.

Python and ASE bindings. Many researchers who conduct
atomistic simulations use Python to setup simulations and analyze
results. Therefore, we have also created Python bindings for Elec-
troLens by wrapping with the CEFpython library [26]. The bindings
are designed to follow the structure of the ASE Python library [19],
which is widely used by researchers in the field and contains classes
corresponding to common data structures like atom positions [C6
]. ASE also contains numerous translators for reading/writing a
range of different file types into standardized data structures. By
leveraging Python and ASE, ElectroLens is compatible with a wide
range of file formats, and easy to use for anyone familiar with ASE.

4.2 Case Studies

This section presents two example applications of ElectroLens, pre-
senting how it facilitated and accelerated research in ML and chem-
istry. They are: (1) Diagnosing the failure of a neural network for
predicting exchange-correlation energy from electron density (Sect.
4.2.1) and (2) Identifying atomic configurations corresponding to a
failing machine-learned force field (Sect. 4.2.2).
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Figure 4: ElectroLens visualizing a cluster of water (H2O) molecules.
For the 3D view, the size codes atom type (large = oxygen, small =
hydrogen), and the color codes the values of a symmetry function
fingerprint [8]. The lines between atoms label the bonds. Both 2D
plots are plotting two symmetry function features, and users can select
parts on the 2D plots to view the corresponding atoms in the 3D view.

4.2.1 Constructing ML models from electron density
ElectroLens was originally developed to support a research project to
establish a ML model to predict the exchange-correlation energy, a
key quantity needed in density functional theory (DFT) [20]. Briefly,
DFT is a widely-used technique for simulating the electronic struc-
ture of molecular systems. The formalism is based on a powerful
theorem proving a one-to-one mapping between electron density
and ground-state energy [5, 12, 16]. However, the connection to one
part of the energy, known as the exchange-correlation (xc) energy, is
unknown. Our work focused on using neural network (NN) to empir-
ically learn this connection. As a first step, a NN model was trained
between the local electron density at a point and the corresponding
xc energy at the same point [27]. However, the resulting accuracy
was insufficient, and ElectroLens was used to diagnose this result.

Connecting chemistry to features. We diagnosed this problem
by plotting the NN prediction error as a function of the electron
density that was the input of the NN. This revealed a multi-valued
error distribution with three distinct “tails” (Fig. 2, upper right).
This explains the poor accuracy of the model because multi-valued
functions can not be regressed, and implies there are electronic
environments that can not be distinguished by electron density alone.
However, the chemical nature of the problematic environments was
not immediately clear. We selected several sample systems (CO2,
N2O, and HCOOH) and utilized ElectroLens to simultaneously
visualize the electronic environments and atom positions (Fig.2 left
panels). Through interactive selection, ElectroLens revealed that the
tails correspond to the atomic core regions for C, N, and O atoms,
as shown in Fig. 3. This clearly illustrated that the NN model was
failing due to the electron density in the atomic core regions.

Understanding relationships between features. To further di-
agnose the issue, additional features were selected to distinguish the
C, N, and O core regions. Prior models utilize the derivative of the
electron density, so this was one of the features we investigated. We
used ElectroLens to plot the derivative as a function of the electron
density and observed a similar three-tailed structure, as shown in
Fig. 2 (bottom right). ElectroLens was used to show that these tails
corresponded to the tails in the error distribution (Fig. 3). This pro-
vided the insight that the derivative of the electron density is capable
of distinguishing the C, N, and O core regions, and led to a newand
more accurate NN model based on the density and its derivative.
This evolved into the development of new rotationally-invariant ver-
sions of the derivatives based on convolutions with MCSH kernels,
ultimately improving the accuracy of the models even further [20].

From this case study, two features have proven to be crucial: (1)
The ability to simultaneously compare across different systems; (2)
The ability to interact smoothly (60 fps) with a large (1 million
47-dimensional points) data set.

4.2.2 Assessing ML force-fields based on atomic positions
The construction of ML force-fields for predicting energies and
forces directly from atomic structures is a rapidly growing sub-field
of computational chemistry [6, 10, 18, 21]. Briefly, these methods
take atomic positions as inputs, then use symmetry-preserving fin-
gerprints to distinguish the chemical environments experienced by
each atom. These fingerprints are used as inputs to ML models, typi-
cally NNs, and trained to rapidly and accurately reproduce forces
and energies of each atom using training data generated with ex-
pensive quantum-mechanical simulations. However, the black-box
nature of the process makes it difficult to diagnose failures. In our
research group we commonly experience a specific failure mode
where a model is accurate for training data, but exhibits erroneously
large forces when applied in a molecular dynamics simulation. This
occurs because some atoms in the system move into chemical en-
vironments that were not sampled in the training data, leading to
inaccurate results. However, it can be particulary difficult to pinpoint
exactly which atoms are outliers, making it challenging to identify
new training systems that will improve the model.

View customization and double encoding. ElectroLens sup-
ports encoding features or properties such as the force magnitude in
the 3D visualization frame. This enables views like the one shown
in Fig. 4, where atoms with excessively large forces can be easily
identified, as they are colored by the extreme ends of the chosen
color map. This can be used to construct new training data that
contains atomic environments similar to those with large errors.

Interactive selection with atomistic features. In addition to
visualizing errors in the 3D frame, it is also possible to plot them in
the 2D frames, along with other input features to the model. This
provides a route to identify regions of the feature space that have
not been sampled, facilitating the generation of new training data or
implementation of methods to raise errors when the model moves
outside the domain of the training data.

The main lesson learned from this study is that the use of double-
encoding features using color or size can assist researchers in identi-
fying interesting patterns. This is not standard in visualizing chemi-
cal data, since size and color are typically determined by the element.

5 CONCLUSION AND FUTURE WORK

A new visualization tool called ElectroLens has been developed to
analyze high-dimensional features derived from 3D datasets. The
tool has been developed in the context of atomic and electronic
structure data, corresponding to two different representations (ir-
regular and regular grids). ElectroLens is built to be efficient with
large datasets easy to use and integrate with existing infrastructure
for atomstic simulations. ElectroLens was applied and tested in
multiple scenarios, leading to improved ML models for exchange-
correlation energies and atomistic force fields (Sect. 4.2). Future
work includes implementing other projections into ElectroLens, as
well as studying methods to automatically infer informative fea-
ture combinations. We also plan to focus on applications of the
tool to the increasingly popular NN force-fields for molecular dy-
namics simulations [6, 10, 18, 21], including improved handling of
time-dependent data sets. Further, we expect that ElectroLens may
be useful for a wider set of problems in chemistry, physics, and
engineering involving spatially-resolved high-dimensional data.
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