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ABSTRACT

We introduce the fraud de-anonymization problem, that goes beyond
fraud detection, to unmask the human masterminds responsible for
posting search rank fraud in online systems. We collect and study
search rank fraud data from Upwork, and survey the capabilities
and behaviors of 58 search rank fraudsters recruited from 6 crowd-
sourcing sites. We propose Dolos, a fraud de-anonymization system
that leverages traits and behaviors extracted from these studies, to
attribute detected fraud to crowdsourcing site fraudsters, thus to
real identities and bank accounts. We introduce MCDense, a min-
cut dense component detection algorithm to uncover groups of user
accounts controlled by different fraudsters, and leverage stylometry
and deep learning to attribute them to crowdsourcing site profiles.
Dolos correctly identified the owners of 95% of fraudster-controlled
communities, and uncovered fraudsters who promoted as many as
97.5% of fraud apps we collected from Google Play. When evaluated
on 13,087 apps (820,760 reviews), which we monitored over more
than 6 months, Dolos identified 1,056 apps with suspicious reviewer
groups. We report orthogonal evidence of their fraud, including
fraud duplicates and fraud re-posts.
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1 INTRODUCTION

The competitive, dynamic nature of online services provides high
rewards to the developers of top ranking products, through direct
payments or ads. The pressure to succeed, coupled with the knowl-
edge that statistics over user actions (e.g., reviews, likes, followers,
app installs) play an essential part in a product’s ranking [3, 19, 27],
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Figure 1: Anonymized snapshots of profiles of search rank

fraudsters from Upwork (top 2) and Freelancer (bottom).

Fraudsters control hundreds of user accounts and earn thou-

sands of dollars through hundreds of work hours. Our goal

is to de-anonymize fraud, i.e., attribute fraud detected for

products in online systems, to the crowdsourcing site ac-

counts of the fraudsters (such as these) who posted it.

has created a black market for search rank fraud: Fraudsters cre-
ate hundreds of user accounts, connect with product developers
through crowdsourcing sites [1, 2, 11], then post fake activities for
their products, from the accounts they control, see Figure 1.

Detecting and disincentivizing search rank fraudsters are tasks
of paramount importance to building trust in online services and
the products that they host. Previous work has focused mainly on
detecting online fraud [4–6, 8, 10, 12, 13, 18, 20, 21, 28, 29, 32, 33],
andmany review based online systems filter out detected fraudulent
activities [9, 22, 25]. However, a preliminary study we performed
with 58 fraudsters from 6 crowdsourcing sites revealed that workers
with years of search rank fraud expertise are actively working on
such jobs, and are able to post hundreds of reviews for a single
product at prices ranging from a few cents to $10 per review, see
e.g., Figure 3. This suggests that fraud detection alone is unable to
prevent large scale search rank fraud behaviors in online systems.

In this paper we introduce the fraud de-anonymization problem,
a new approach to address the limitations of status quo solutions,
through disincentivizing search rank fraud workers and their em-
ployers. Unlike standard de-anonymization, which refers to the
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adversarial process of identifying users from data where their Per-
sonally Identifiable Information (PII) has been removed, the fraud
de-anonymization problem seeks to attribute detected search rank
fraud to the humans who posted it. A solution to this problem
will enable online services to put a face to the fraud posted for
the products they host, retrieve banking information and use it to
pursue fraudsters, and provide proof of fraud to customers, e.g.,
links to the crowdsourcing accounts responsible, see Figure 1. Thus,
fraud de-anonymization may provide counter-incentives both for
crowdsourcing workers to participate in fraud jobs, and for product
developers to recruit fraudsters.

To understand and model search rank fraud behaviors, we have
developed a questionnaire and used it to survey 58 fraudsters re-
cruited from 6 crowdsourcing sites. We have collected data from
search rank fraud jobs and worker accounts in Upwork, and used
it to identify fraudster traits and to collect 111,714 fake reviews
authored by 2,664 fraudulent Google Play accounts, controlled by
an expert core among 533 identified search rank fraudsters.

We leverage the identified traits to introduce Dolos1 a system
that cracks down fraud by unmasking the human masterminds
responsible for posting significant fraud. Dolos detects then at-
tributes fraudulent user accounts in the online service, to the crowd-
sourcing site accounts of the workers who control them. We devise
MCDense, a min-cut dense component detection algorithm that
analyzes common activity relationships between user accounts to
uncover groups of accounts, each group controlled by a different
search rank fraudster. We further leverage stylometry, graph based
deep learning feature extraction tools, and supervised learning to
attributeMCDense detected groups to the crowdsourcing fraudsters
who control them.

Dolos correctly attributed 95% of the reviews of 640 apps (that
received significant, ground truth search rank fraud) to their au-
thors. For 97.5% of the apps, Dolos correctly de-anonymized at
least one of the fraudsters who authored their fake reviews. Do-
los achieved 90% precision and 89% recall when attributing the
above 2,664 fraudulent accounts to the fraudsters who control them.
Further, MCDense significantly outperformed an adapted densest
subgraph solution.

We have evaluated Dolos on 13,087 Google Play apps (and their
820,760 reviews) that we monitored over more than 6 months. Do-
los discovered that 1,056 of these apps have suspicious reviewer
groups. Upon close inspection we found that (1) 29.9% of their
reviews were duplicates and (2) 73% of the apps that had at least
one MCDense discovered clique, received reviews from the expert
core fraudsters that we mentioned above. We also report cases of
fraud re-posters, accounts who re-post their reviews, hours to days
after Google Play filters them out (up to 37 times in one case). In
summary, we introduce the following contributions:

• Fraud de-anonymization problem formulation. Intro-
duce a new approach to combat and disincentivise search
rank fraud in online systems.

• Study and model search rank fraud. Survey 58 fraud-
sters from 6 crowdsourcing websites, collect gold standard
attributed search rank fraud data and extract insights into
fraudster behaviors.

1Dolos is a concrete block used to protect harbor walls from erosive ocean waves.

Figure 2: System and adversary model. Developers upload

products, on which users post activities, e.g., reviews, likes.

Adversarial developers crowdsource search rank fraud. Un-

like fraud detection solutions, Dolos unmasks the human

fraudsters responsible for posting search rank fraud.

• Dolos andMCDense. Exploit extracted insights to develop
fraud de-anonymization algorithms. Evaluate algorithms ex-
tensively on Google Play data. Identify orthogonal evidence
of fraud from detected suspicious products. The code is avail-
able for download at https://github.com/FraudHunt.

2 STUDY & MODEL SEARCH RANK FRAUD

2.1 System and Adversary Model

We consider an ecosystem that consists of online services and
crowdsourcing sites. Online services host accounts for developers,
products and users, see Figure 2. Developers use their accounts to
upload products. Users post activities for products, e.g., reviews, rat-
ings, likes, installs. Product accounts display these activities posted
and statistics, while user accounts list the products on which users
posted activities. Crowdsourcing sites host accounts for workers
and employers. Worker accounts have unique identifiers and bank
account numbers used to deposit the money that they earn. Employ-
ers post jobs, while workers bid on jobs, and, following negotiation
steps, are assigned or win the jobs.

We consider product developers who hire workers from crowd-
sourcing sites, to perform search rank fraud, see Figure 1. We focus
onworkers who control multiple user accounts in the online system,
which they use to post fake activities, e.g., review, rate, install.

Previous studies of online fraud include the work of Yang et
al. [35], who showed that “criminal” Twitter accounts tend to form
small-world social networks. Mukherjee et al. [20, 21] confirmed
this finding and introduced features that identify reviewer groups,
who review many products in common but not much else, post
their reviews within small time windows, and are among the first to
review the product. Further, Beutel et al. [7] proposed CopyCatch, a
system that identifies lockstep behaviors, i.e., groups of user accounts
that act in a quasi-synchronized manner, to detect fake page likes in
Facebook. Chen et al. [8] identify clusters of apps in Apple’s China
App store, that have been promoted in a similar fashion.

In contrast, in this paper we focus on de-anonymizing fraud,
by attributing it to fraudsters recruited from crowdsourcing sites.
In this section we describe our efforts to understand and model
such search rank fraud experts. In the following, we use the terms
worker, fraudster and fraud worker, interchangeably.
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Figure 3: Statistics over 44 fraudsters (targeting Google Play apps) recruited from 5 crowdsourcing sites: minimum, average

and maximum for (a) number of reviews that a fraudster can write for an app, (b) price demanded per review, (c) years of

experience, (d) number of apps reviewed in the past 7 days. Fraudsters report to be able to write hundreds of reviews for a

single app, have years of experience and are currently active. Prices range from 56 cents to $10 per review.

2.2 Motivation: Fraudster Capabilities

To evaluate the magnitude of the problem, we have first contacted
44 workers from several crowdsourcing sites including Zeerk (12),
Peopleperhour (9), Freelancer (8), Upwork (6) and Facebook groups
(9), who advertised search rank fraud capabilities for app markets.
We asked them (1) how many reviews they can write for one app,
(2) how much they charge for one review, (3) how many apps they
reviewed in the past 7 days, and (4) for how long they been active
in promoting apps.

Figure 3 shows statistics over the answers, organized by crowd-
sourcing site. It suggests significant profits for fraudsters, who claim
to be able to write hundreds of reviews per app (e.g., an average of
250 reviews by Freelancer workers) and charge from a few cents
($0.56 on average from Zeerk.com workers) to $10 per review (Free-
lancer.com). Fraudsters have varied degrees of expertise in terms
of years of experience and recent participation in fraud jobs. For
instance, fraudsters from Peopleperhour and Upwork have more
than 2.5 years experience and more than 3 recent jobs on average.
Further, in recently emerged Facebook groups, that either directly
sell reviews or exchange reviews, fraudsters have less than 2.5 years
experience, but are very active, with more than 7 jobs in the past 7
days on average, and economical ($1.3 on average per review).

Subsequently, we have developed a more detailed questionnaire
to better understand search rank fraud behaviors and delivered it
to 14 fraud freelancers that we recruited from Fiverr. We paid each
participant $10, for a job that takes approx. 10 minutes. The IPs from
which the questionnaire was accessed revealed that the participants
were from Bangladesh (5), USA (2), Egypt (2), Netherlands, UK,
Pakistan, India and Germany (1). The participants declared to be
male, 18 - 28 years old, with diverse education levels: less than
high school (1), high school (2), associate degree (3), in college (5),
bachelor degree or more (3).

The participants admitted an array of fraud expertise (fake re-
views and ratings in Google Play, iTunes, Amazon, Facebook and
Twitter, fake installs in Google Play and iTunes, fake likes and fol-
lowers in Facebook and Instagram, influential tweets in Twitter).
We found a mix of (1) inexperienced and experienced fraudsters:
4 out of 14 had been active less than 2 months and 6 fraudsters
had been active for more than 1 year, and (2) active and inactive
fraudsters: 4 had not worked in the past month, 9 had worked on
1-5 fraud jobs in the past month, and 1 worked on more than 10
jobs; 8 fraudsters were currently active on 1-5 fraud jobs, and 1
on more than 5. Further, we observed varying search rank fraud

capabilities: 8 of the 11 surveyed fraudsters who wrote reviews,
admit to have reviewed an app at least 5 times; 1 admits to have
written 51 to 100 reviews for an app.

Of the 14 fraudsters surveyed, 3 admitted to working in teams
that had more than 10 members, and to sharing the user accounts
that they control, with others. 10 fraudsters said that they control
more than 5 Google Play accounts and 1 fraudster had more than
100 accounts. Later in this section we show that this is realistic, as
other 23 fraudsters we recruited, were able to reveal between 22
and 86 Google Play accounts that they control. Further, 4 fraudsters
said that they never abandon an account, 5 said that they use each
account until they are unable to login, and 4 said that they use it
for at most 1 year. This is confirmed by our empirical observation
of the persistence of fraud (see end of section 2.4).
Ethical considerations. We have developed our protocols to in-
teract with participants and collect data in an IRB-approved manner
(Approval #: IRB-15-0219@FIU).

2.3 A Study of Search Rank Fraud Jobs

We identified and collected data from 161 search rank fraud jobs in
Upwork that request workers to post reviews on, or install Google
Play and iTunes apps. We have collected the 533 workers who have
bid on these jobs. We call the bidding workers that are awarded
a job, winners. One job of the 161, was awarded to 12 workers;
more jobs were awarded to 2 workers than to only 1. This indicates
that hiring multiple workers is considered beneficial by adversarial
developers, and suggests the need to attribute detected organized
fraud activities to human masterminds (see next section).

We introduce the concepts of co-bid and co-win graphs. In the co-
bid graph, nodes are workers who bid on fraud jobs; edges connect
workers who bid together on at least one job. The edge weights
denote the number of jobs on which the endpoint workers have bid
together. In the co-win graph, the weight of an edge is the number
of fraud jobs won by both endpoint workers.

Out of the 56 workers who won the 161 jobs, only 40 had won a
job along with another bidder. Figure 4(a) shows the co-bid graph
of these 40 winners, who form a tight community. Figure 4(b) plots
the co-win graph of the 40 winners. We observe an “expert core” of
8 workers who each won between 8 to 15 jobs. Further, we observe
infrequent collaborations between any pair of workers: any two
workers collaborated on at most 4 jobs.
Empirical Adversary Traits. Our studies reveal several search
rank fraudster traits:
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(a) (b)
Figure 4: (a) Worker co-bid graph: Nodes are Upwork work-

ers. An edge connects two workers who co-bid on search

rank fraud jobs. We see a tight co-bid community of work-

ers; some co-bid on 37 jobs. (b) Worker Co-win graph with

an “expert core” of 8 workers (red), each winning 8 − 15 jobs.
Edges connect workers who won at least one job together.

Any two workers collaborated infrequently, up to 4 jobs.

• Trait 1: Fraudsters control multiple user accounts which
they use to perpetrate search rank fraud.

• Trait 2: While fraudsters have diverse search rank fraud
capabilities, crowdsourcing sites have an “expert core” of
successful search rank fraud workers. Many fraudsters are
willing to contribute, but few have the expertise or reputation
to win such jobs.

• Trait 3: Search rank fraud jobs often recruit multiple work-
ers. Thus, targeted products may receive fake reviews from
multiple fraudsters.

• Trait 4: Any two fraudsters collaborate infrequently, when
compared to the number of search rank fraud jobs on which
they have participated, see Figure 4(b).

• Trait 5: Fraudsters, including experts, are willing to share in-
formation about their behaviors, perhaps to convince prospec-
tive employers of their expertise.

Dolos exploits these traits to detect and attribute groups of fraudu-
lent user accounts to the fraudsters who control them. While we do
not claim that the sample data from which the traits are extracted
is representative, in the evaluation section we show that Dolos can
accurately de-anonymize fraudsters.

2.4 Fraudster Profile Collection (FPC)

Kaghazgaran et al. [15] identified crowdsourcing site jobs that re-
veal the targeted Amazon products, then studied those products.
However, they did not attribute the fraudulent reviews to the crowd-
sourcing site accounts of the workers who worked on those jobs.
Xie and Zhu [34] monitored 52 paid review service providers for
four months and exposed apps that they promoted.

Unlike previous work, we leveraged Trait 5 to collect a first
gold standard dataset of attributed, fraudster controlled accounts in
Google Play. For this, we have identified and contacted 100 Upwork,
Fiverr and Freelancer workers with significant bidding activity on
search rank fraud jobs targeting Google Play apps. Figure 5 shows
the number of accounts (bottom, red segments) revealed by each
of 23 most responsive of these workers: between 22 and 86 Google
Play accounts revealed per worker, for a total of 1,356 user accounts.
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Figure 5: Attributed, fraudster-controlled accounts. The

numbers of Google Play accounts revealed by the detected

fraudsters are shown in red. Each of the 23 fraudsters has

revealed between 22 to 86 accounts. Guilt-by-association ac-

counts are shown in orange. We have collected a total of

2,664 accounts (red + orange). One fraudster controls (at

least) 217 accounts.

Algorithm Precision Recall F-measure

RF 95.5% 91.6% 93.5%
SVM 98.5% 98.3% 98.5%
k-NN 97.1% 96.4% 96.7%
MLP 98.6% 98.1% 98.4%

Table 1: Account attribution performance on gold standard

fraudster-controlled dataset, with several supervised learn-

ing algorithms (parameters d = 300, t = 100, γ = 80, andw = 5
set through a grid search). SVM performed best.

Fraud app dataset. To expand this data, we collected first a subset
of 640 apps that received the highest ratio of reviews from accounts
controlled by the above 23 expert core workers to the total number
of reviews. We have monitored the apps over a 6 month interval,
collecting their new reviews once every 2 days. The 640 apps had
between 7 to 3,889 reviews. Half of these apps had at least 51% of
their reviews written from accounts controlled by the 23 fraudsters.
In the following we refer to these, as the fraud apps.
Union fraud graph. We have collected the account data of the
38, 123 unique reviewers (956 of which are the seed accounts re-
vealed by the 23 fraudsters) of the fraud apps, enabling us to build
their union fraud graph: a node corresponds to an account that
reviewed one of these apps (including fraudster controlled and hon-
est ones), and the weight of an edge denotes the number of apps
reviewed in common by the accounts that correspond to the end
nodes. We have removed duplicates: an account that reviewed mul-
tiple fraud apps has only one node in the graph. The union fraud
graph has 19,375,550 edges and 162 disconnected components, of
which the largest has 37,566 nodes.
Guilt-by-association. We have labeled each node of the union
fraud graph with the ID of the fraudster controlling it or with “un-
known” if no such information exists. For each unknown labeled
nodeU , we decide ifU is controlled by one of the fraudsters, based
on how wellU is associated with accounts controlled by the fraud-
ster. However, U may be connected to the accounts of multiple
fraudsters (see Trait 3).
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To address this problem, we leveraged Trait 4 to observe that
random walks that start from nodes controlled by the same fraud-
sters are likely to share significant context, likely different from the
context of nodes controlled by other fraudsters, or that are honest.
We have pre-processed the union fraud graph to convert it into
a non-weighted graph: replace an edge between nodes ui and uj
with weight wi j , by wi j non-weighted edges between ui and uj .
We then used the DeepWalk algorithm [26] to perform γ random
walks starting from each node v in this graph, where a walk sam-
ples uniformly from the neighbors of the last vertex visited until it
reaches the maximum walk length (t ). The pre-processing of the
union graph ensures that the probability of DeepWalk at node ui
to choose node uj as next hop, is proportional to wi j . DeepWalk
also takes as input a window sizew , the number of neighbors used
as the context in each iteration of its SkipGram component. Deep-
walk returns a d-dimensional representation in Rd for each of the
nodes. We then used this representation as predictor features for
the “ownership” of the account U - the fraudster who controls it.

Table 1 highlights precision, recall, and F-measure achieved by
different supervised learning algorithms. We observe that SVM
reaches 98.5% F-measure which suggests DeepWalk’s ability to pro-
vide useful features and assist in our guilt-by-association process.
We then applied the trained model to the remaining and unla-
beled accounts in the union fraud graph obtaining new guilt-by-
association accounts for each of the 23 workers. Figure 5 shows
the number of seed and guilt-by-association accounts uncovered
for each of the 23 fraudsters. We have collected 1, 308 additional
accounts across workers for a total of 2,664 accounts.
Persistence of fraud. After more than 1 year following the collec-
tion of the 2,664 fraudster-controlled accounts, we have re-accessed
the accounts. We found that 67 accounts had been deleted and 529
accounts were inactive, i.e., all information about apps installed,
reviewed, +1’d was removed. 2,068 accounts were active. This is
consistent with the findings from our fraudster survey, where 4
out of 14 surveyed fraudsters said that they never abandon an ac-
count, 5 said that they use each account until they are unable to
login, and 4 said that they use it for at most 1 year. This further
suggests the limited ability of Google Play to identify and block
fraudster-controlled accounts.

3 FRAUD DE-ANONYMIZATION SYSTEM

3.1 Problem Definition

Unlike standard de-anonymization, which refers to the adversarial
process of identifying users from data where their PII has been
removed, in this paper we define the fraud de-anonymization prob-
lem in a positive context. Specifically, let W = {W1, ..,Wn } be the
set of crowdsourcing worker accounts, let U = {U1, ..,Um } be the
set of user accounts and let A = {A1, ..,Aa } be the set of products
hosted by the online service. Then, given a product A ∈ A, return
the subset of fraudsters inW who control user accounts inU that
posted fraudulent activities for A.

3.2 Solution Overview

We introduce Dolos, the first fraud de-anonymization system that
integrates activities on both crowdsourcing sites and online services.
As illustrated in Figure 6, Dolos (1) proactively identifies new

Figure 6: Dolos system architecture. The Fraud Component

Detection (FCD) module partitions the co-activity graphs

of apps into loosely inter-connected, dense components.

The Component Attribution (CA) module attributes FCD

detected components to fraudster profiles collected by the

Fraudster Profile Collector (FPC), see § 2.4.

fraudsters and builds their profiles in crowdsourcing sites, then (2)
processes product and user accounts in online systems to attribute
detected fraud to these profiles. The gold standard fraudster profile
collection (FPC) module described in the previous section performs
the first task. In the following, we focus on the second task, which
we break into two sub-problems:

• Fraud-Component Detection Problem. Given a product
A ∈ A, return a set of components CA = {C1, ..,Ck }, where
any Cj=1..k consists of a subset of the user accounts who
posted an activity for A, s.t., those accounts are either con-
trolled by a single worker in W, or are honest.

• Component Attribution Problem. GivenW and a com-
ponent C ∈ CA, return the identity of the worker in W
who controls all the accounts in the component, or ⊥ if the
accounts are not controlled by a worker.

The FCD module of Dolos partitions the reviews of a product into
components, such that all the reviews in a component were posted
by a single fraudster. The CA module attributes each component
to crowdsourcing account of the fraudster who controls it. In the
following, we detail these modules.

3.3 Fraud Component Detection (FCD) Module

The FCD module leverages graphs built over common activities
performed by user accounts, in order to identify communities, each
controlled by a different fraudster. Previous work has used graph
based approaches to detect fraudulent behaviors, e.g., [13, 30, 32,
33, 36]. Ye and Akoglu [36] quantified the chance of a product to
be a spam campaign target, then clustered spammers on a 2-hop
subgraph induced by the products with the highest chance values.
Wang et. al [32] leaveraged a novel Markov Random Field to detect
fraudsters in social networks via guilt-by-association on directed
graphs. Shen et al [30] introduced “k-triangles” to measure the
tenuity of account groups and proposed algorithms to approximate
the Minimum k-Triangle Disconnected Group problem. Hooi et
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Figure 7: Co-activity graph of user accounts reviewing a pop-

ular horoscope app in Google Play (name hidden for pri-

vacy). Nodes are accounts. 4 Upwork workers each revealed

to control the accounts of the same color. Two accounts are

connected if they post activities for similar sets of apps.

Node sizes are a function of the account connectivity.

al. [13] have shown that fraudsters have evolved to hide their traces,
by adding spurious reviews to popular items. They introduced a
class of “suspiciousness” metrics that apply to bipartite user-to-item
graphs, and developed a greedy algorithm to find the subgraph with
the highest suspiciousness metric.

In contrast, the FCD module needs to solve the more complex
problem of accurately identifying groups of user accounts such
that each group is controlled by a different fraudster. In order to
achieve this, we leverage the adversary Trait 4, that the accounts
controlled by one fraudster are likely to have reviewed significantly
more products in common than with the accounts controlled by
another fraudster. We introduce MCDense, an algorithm that takes
as input the co-activity graph of a productA, and outputs its fraud
components, sets of user accounts, each potentially controlled by a
different worker. We define the co-activity graph of a product A
as G = (U, Ew ), with a node for each user account that posted an
activity forA (see Figure 7 for an illustration). Two nodesui ,uj ∈ U
are connected by a weighted edge e(ui ,uj ,wi j ) ∈ Ew , where the
weight wi j is the number of products on which ui and uj posted
activities in common.

MCDense, see Algorithm 1, detects densely connected subgraphs,
each subgraph being minimally connected to the other subgraphs.
Given a graph G = (U, Ew ), its triangle density is ρ(G) = t (V )

(|V |
3 )

,

where t(V ) is the number of triangles formed by the edges in Ew .
MCDense recursively divides the co-activity graph into two

minimally connected subgraphs: the sum of the weights of the
edges crossing the two subgraphs, is minimized. If both subgraphs
are more densely connected than the original graph (line 4) and
the density of the original graph is below a threshold τ , MCDense
treats each subgraph as being controlled by different workers: it
calls itself recursively for each subgraph (lines 5 and 6). Otherwise,
MCDense considers the undivided graph to be controlled by a single
worker, and adds it to the set of identified components (line 8).

We have used the gold standard set of accounts controlled by
the 23 fraudsters detailed in the previous section, to empirically

Algorithm 1 MCDense: Min-Cut based Dense component de-
tection. We set η to 5 and tau to 0.5.

Input: G = (U, Ew ): input graph
n := |U|

Output: C := ∅: set of node components
1. MCDense(G){
2. if (nodeCount(G) < η) return;
3. (G1, G2) := weightMinCut(G);
4. if ((ρ(G1) > ρ(G) & ρ(G2) > ρ(G))

& (ρ(G) < τ )){
5. MCDense(G1); MCDense(G2);
6. else

7. C := C ∪ G;
8. return;
9. end if

set the τ threshold to 0.5, as the lowest density of the 23 groups of
accounts revealed by the fraudsters was just above 0.5.
MCDense converges and has O(|Ew | |U|3) complexity. To see
that this is the case, we observe that at each step, MCDense either
stops or, at the worst, “shaves” one node from G. The complexity
follows then based on Karger’s min-cut algorithm complexity [16].

3.4 Component Attribution (CA) Module

Given a set of fraud worker profiles FW and a set of fraud compo-
nents returned by the FCD module for a product A, the component
attribution module identifies the workers likely to control the ac-
counts in each component. To achieve this, Dolos leverages the
uniquewriting style of human fraudsters to fuse elements from com-
putational linguistics, e.g., [17, 23], and author de-anonymization,
e.g., [24]. Specifically, we propose the following 2-step component
attribution process:
CA Training. Identify the products reviewed by the accounts con-
trolled by each fraudsterW ∈ FW. For each such product, create
a review instance that consist of all the reviews written by the ac-
counts controlled byW for A. Thus, each review instance contains
only (but all) the reviews written from the accounts controlled by a
single fraudster, for a single product. Extract stylometry features
from each review instance of each fraudster, including character
count, average number of characters per word, and frequencies of
letters, uppercase letters, special characters, punctuation marks,
digits, numbers, top letter digrams, trigrams, part of speech (POS)
tags, POS digrams, POS trigrams, word digrams, word trigrams and
of misspelled words. Train a supervised learning algorithm on these
features, that associates the feature values of each review instance
to the fraudster who created it.
Attribution. Let C denote the set of components returned by MC-
Dense for a product A. For each component C ∈ C, group all the
reviews written by the accounts in C for product A, into a review
instance, r . Extract r ’s stylometry features and use the trained clas-
sifier to determine the probability that r was authored by each of
the fraudsters in FW. Output the identity of the fraudster with
the highest probability of having authored r .
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Figure 8: MCDense: Cummulative distribution function (CDF) over 640 fraud, 219 honest, and 1,056 suspicious “wild” apps,

of per-app (a) number of components of at least 5 accounts, (b) maximum density of an identified component and (c) size of

densest component. We observe significant differences between fraud and honest apps.

4 EMPIRICAL EVALUATION

In this section we compare the results of Dolos on fraud and hon-
est apps, evaluate its de-anonymization accuracy, and present its
results on 13,087 apps. Further, we compare MCDense with DSG,
an adapted dense sub-graph detection solution.

4.1 Fraud vs. Honest Apps

We evaluate the ability of Dolos to discern differences between
fraudulent and honest apps. For this, we have first selected 925 can-
didate apps from the longitudinal app set, that have been developed
by Google designated “top developers”. We have filtered the apps
flagged by VirusTotal. We have manually investigated the remain-
ing apps, and selected a set of 219 apps that (i) have more than 10
reviews and (ii) were developed by reputable media outlets (e.g.,
Google, PBS, Yahoo, Expedia, NBC) or have an associated business
model (e.g., fitness trackers). We have collected 38,224 reviews and
their associate user accounts from these apps.

Figure 8(a) compares the CDF of the number of components (of
at least 5 accounts) found by MCDense per each of the 640 fraud
apps vs. the 219 honest apps. MCDense found that all the fraud
apps had at least 1 component, however, 70% of the honest apps
had no component. The maximum number of components found
for fraud apps is 19 vs. 4 for honest apps. Figure 8(b) compares
the CDF of the maximum edge density (ratio of number of edges
to maximum number of edges possible) of a component identified
by MCDense per fraud vs. honest apps. 94.4% of fraud apps have
density more than 75% while only 30% of the honest apps have a
cluster with density larger than 0. The increase is slow, with 90%
of the honest apps having clusters with density of 60% or below.
Figure 8(c) compares the CDF of the size of the per-app densest
component found for fraud vs. honest apps. 80% of the fraud apps
vs. only 7% of the honest apps, have a densest component with more
than 10 nodes. The largest, densest component has 220 accounts for
a fraud app, and 21 accounts for an honest app. We have manually
analyzed the largest, densest components found by MCDense for
the honest apps and found that they occur for users who review
popular apps such as the Google, Yahoo or Facebook clients, and
users who share interests in, e.g., social apps or games.

Algo Top 1 (TPR) Top 3 Top 5

k-NN (IBK) 1608 (95.0%) 1645 1646
RF (Random Forest) 1487 (87.9%) 1625 1673
DT (Decision Tree) 1126 (66.5%) 1391 1455

Table 2: Dolos attribution performance for the 1,690 in-

stances of the 640 fraud apps. k-NN achieved the best per-

formance: It correctly identifies the workers responsible for

95% (1608) of the instances.

4.2 De-Anonymization Performance

We have implemented the CA module using a combination of
JStylo [14] and supervised learning algorithms. We have collected
the 111,714 reviews posted from the 2,664 attributed, fraudster con-
trolled user accounts of § 2.4. The reviews were posted for 2,175
apps. We have grouped these reviews into instances, and we have
filtered out those with less than 5 reviews. Figure 9 shows their
distribution among the 23 fraudsters who authored them.

We have evaluated the performance of Dolos (MCDense + CA)
using a leave-one-out cross validation process over the 640 fraud
apps (and their 1,690 review instances). We have used several super-
vised learning algorithms, including k-nearest neighbors (k-NN),
Random Forest (RF), Decision Trees (DT), Naive Bayes (NB), and
Support Vector Machine (SVM). In each experiment we report the
top 3 performers.
Instance level performance. Table 2 shows the number of in-
stances correctly attributed by Dolos (out of the 1,690 instances of
the 640 fraud apps) and corresponding true positive rate, as well as
the number of instances where the correct worker is among Dolos’
top 3 and top 5 options. k-NN achieved the best performance, cor-
rectly identifying the workers responsible for posting 95% of the
instances. We observe that k-NN correctly predicts the authors of
95% of the instances. Figure 9(b) zooms into per-fraudster precision
and recall, showing the ability of Dolos to identify the instances
and only the instances of each of the 23 workers. For 21 out of 23
workers, the Dolos precision and recall both exceed 87%.
App level performance. Table 3 shows that when using k-NN,
Dolos correctly identified at least 1 worker per app, for 97.5% of
the fraud apps, and identified at least 90% of the workers in each of
87% of the fraud apps. Table 4 shows that the precision of Dolos in
identifying an app’s workers exceeds 90% for 69% of the apps.
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Figure 9: (a) Number of review instances collected from each of the 23 fraudster. Each review instance has at least 5 reviews,

written by the accounts controlled by a single fraudster, for a single app. (b)Dolos per-worker attribution precision and recall,

over the 1,690 review instances of 640 fraud apps, exceed 87% for 21 out of the 23 fraudsters.

Algo 1 worker 50%-recall 70%-recall 90%-recall

RF 624 622 537 465
SVM 574 517 325 284
k-NN 625 625 585 557

Table 3:Dolos app level recall: the number of apps forwhich

Dolos has a recall value of at least 50%, 70% and 90%. k-NN

identifies at least one worker for 97.5% of the 640 fraud apps,

and 90% of the workers of each of 557 (87%) of the apps.

Algo 50%-prec 70%-prec 90%-prec

RF 573 434 359
SVM 460 249 209
k-NN 578 483 444

Table 4: App level precision: the number of apps where its

precision is at least 50%, 70% and 90%. The precision ofDolos

when using k-NN exceeds 90% for 69% of the fraud apps.

Developer tailored search rank fraud. Upon closer inspection
of the Dolos identified clusters, we found numerous cases of clus-
ters consisting of user accounts who reviewed almost exclusively
apps created by a single developer. We conjecture that those user
accounts were created with the specific goal to review the apps of
the developer, e.g., by the developer or their employees.

4.3 Dolos in the Wild

To understand how Dolos will perform in real life, we have ran-
domly selected 13,087 apps from Google Play, developed by 9,430
distinct developers. We monitored these apps over more than 6
months, and recorded their changes once every 2 days. This en-
abled us to collect up to 7,688 reviews per app, exceeding Google’s
one shot limit of 4,000 reviews. We collected the data of the 586,381
distinct reviewers of these apps, and built their co-activity graphs.

MCDense found at least 1 dense component of at least 5 accounts
in 1,056 of the 13,087 apps (8%). Figure 8 compares the results of
MCDense on the 1,056 apps, with those for the fraud and honest
apps. The CDF of the number of components found by MCDense
for these “wild” apps is closer to that of the fraud apps than to the
honest apps: up to 19 components per app, see Figure 8(a). The CDF

of the maximum density of per app components reveals that 231
of the 1,056 apps (or 21.87%) had at least 1 component with edge
density 1 (complete sub-graphs). The CDF of the size of the densest
components (Figure 8(c)) found per each of the wild apps shows
that similar to the 640 fraud apps, few of these apps have only 0 size
densest components. The largest component found by MCDense
for these apps has 90 accounts.
Validation of fraud suspicions. Upon close inspection of the 231
apps that had at least 1 component with edge density of 1 (i.e.,
clique), we found the following further evidence of suspicious fraud
being perpetrated. (1) Targeted by known fraudsters: 169 of the
231 apps had received reviews from the 23 known fraudsters (§ 2.4).
One app had received reviews from 10 of the fraudsters. (2)Review
duplicates: 223 out of the 231 apps have received 10,563 duplicate
reviews (that replicate the text of reviews posted for the same app,
from a different account), or 25.55% of their total 41,339 reviews.
One app alone has 1,274 duplicate reviews, out of a total of 4,251
reviews. (3) Fraud re-posters: our longitudinal monitoring of apps
enabled us to detect fraud re-posters, accounts who re-post their
reviews, hours to days after Google Play filters them out. One of the
231 apps received 37 fraud re-posts, from the same user account.

5 MCDENSE EVALUATION

We compare MCDense against DSG, a densest subgraph approach
that we adapt based on [31]. DSG iteratively identifies multiple
dense subgraphs of an app’s co-activity graph G = (U ,E), each
suspected to belong to a different worker. DSG peels off nodes ofG
until it runs out of nodes. During each “peeling” step, it removes the
node that is least connected to the other nodes. After removing the
node, the algorithm computes and saves the density of the resulting
subgraph. The algorithm returns the subgraph with the highest
density. We use the “triangle” density definition proposed in [31],
ρD =

t (U )
|U | , where t(U ) is the number of triangles formed by the

vertices inU . DSG uses this greedy strategy iteratively: once it finds
the densest subgraph D of G, DSG repeats the process, to find the
densest subgraph in G − D.

To compare MCDense and DSG, we introduce a coverage score.
Let C = {C1, ..,Cc ,HC } be the partition of of the user accounts
who reviewed an app A, returned by a fraud-component detection
algorithm: ∀ai ,aj ∈ Cl , are considered to be controlled by the same
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Figure 10: Comparison of the distribution of coverage scores

forMCDense and DSG over 640 fraud apps. They axis shows

the p1 value, and the x axis shows the number of apps for

which MCDense and DSG achieve that p1 value, when p2
is 90%. MCDense outperforms DSG providing (90%+, 90%)-

coverage for 416 (65%) of the apps vs. DSG’s 245 apps.

worker, and HC is the set of accounts considered to be honest. To
quantify how well the partition C has detected the worker accounts
W1, ..,Ww who targeted A, we propose the “coverage” measure
of workerWi ∈ S by a partition C , as covi (C) = |Wi∩(C1∪..∪Cc ) |

|Wi |
.

Given p ∈ [0, 1], we say thatWi is “p-covered” by C if covi (C) ≥ p.
Then, we say that partition C provides a (p1,p2)-coverage of the
worker set S , if p1 percent of the workers in S are p2-covered by C .

Figure 10 compares the distribution of the coverage scores for
MCDense and DSG over the 640 fraud apps. It shows that the
number of apps for which at least 90% of their workers are at least
90%-covered is twice as high for MCDense than for DSG.

6 CONCLUSIONS

We introduced the fraud de-anonymization problem for search rank
fraud in online services. We have collected fraud data from crowd-
sourcing sites and the Google Play store, and we have performed a
user study with crowdsourcing fraudsters. We have proposed Do-
los, a fraud de-anonymization system. Dolos correctly attributed
95% of the fraud detected for 640 Google Play apps, and identified
at least 90% of the workers who promoted each of 87% of these
apps. Dolos identified 1,056 out of 13,087 monitored Google Play
apps, to have suspicious reviewer groups, and revealed a suite of
observed fraud behaviors.

7 ACKNOWLEDGMENTS

This research was supported by NSF grants CNS-1527153, CNS-
1526254 and CNS-1526494, and by the Florida Center for Cyberse-
curity.

REFERENCES

[1] Freelancer. http://www.freelancer.com. (????).
[2] Upwork Inc. https://www.upwork.com. (????).
[3] 2013. Google I/O 2013 - Getting Discovered on Google Play. www.youtube.com/

watch?v=5Od2SuL2igA. (2013).
[4] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. 2013. Opinion Fraud

Detection in Online Reviews by Network Effects. In Proceedings of ICWSM.
[5] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. 2013. Opinion Fraud

Detection in Online Reviews by Network Effects. Proceedings of ICWSM (2013).
[6] Prudhvi Ratna Badri Satya, Kyumin Lee, Dongwon Lee, Thanh Tran, and Ja-

son Jiasheng Zhang. 2016. Uncovering Fake Likers in Online Social Networks. In
Proceedings of the ACM CIKM.

[7] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Chris-
tos Faloutsos. 2013. CopyCatch: Stopping Group Attacks by Spotting Lockstep
Behavior in Social Networks. In Proceedings of the WWW.

[8] Hao Chen, Daojing He, Sencun Zhu, and Jingshun Yang. 2017. Toward Detecting
Collusive Ranking Manipulation Attackers in Mobile App Markets. In Proceedings
AsiaCCS.

[9] Jason Cipriani. 2016. Google starts filtering fraudulent app reviews from Play
Store. ZDNet, https://tinyurl.com/hklb5tk. (2016).

[10] Geli Fei, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos, and Rid-
dhiman Ghosh. 2013. Exploiting Burstiness in Reviews for Review Spammer
Detection. ICWSM 13 (2013), 175–184.

[11] Fiverr. https://www.fiverr.com/. (????).
[12] Bryan Hooi, Neil Shah, Alex Beutel, Stephan Günnemann, Leman Akoglu, Mohit

Kumar, Disha Makhija, and Christos Faloutsos. 2016. Birdnest: Bayesian inference
for ratings-fraud detection. In Proceedings of SDM.

[13] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos
Faloutsos. 2016. Fraudar: Bounding graph fraud in the face of camouflage. In
Proceedings of ACM KDD.

[14] JStylo. The JStylo Open Source Project on Open Hub. https://www.openhub.net/
p/jstylo. (????).

[15] Parisa Kaghazgaran, James Caverlee, and Majid Alfifi. 2017. Behavioral Analysis
of Review Fraud: Linking Malicious Crowdsourcing to Amazon and Beyond.. In
Proceedings of ICWSM.

[16] David R Karger. 1993. Global Min-cuts in RNC, and Other Ramifications of a
Simple Min-Cut Algorithm.. In SODA, Vol. 93.

[17] Raymond YK Lau, SY Liao, Ron Chi Wai Kwok, Kaiquan Xu, Yunqing Xia, and
Yuefeng Li. 2011. Text mining and probabilistic language modeling for online
review spam detecting. ACM Transactions on Management Information Systems 2,
4 (2011), 1–30.

[18] Huayi Li, Geli Fei, Shuai Wang, Bing Liu, Weixiang Shao, Arjun Mukherjee, and
Jidong Shao. 2017. Bimodal distribution and co-bursting in review spam detection.
In Proceedings of ACM WWW.

[19] Michael Luca. 2011. Reviews, Reputation, and Revenue: The Case of Yelp.Com.
SSRN eLibrary (2011).

[20] Arjun Mukherjee, Abhinav Kumar, Bing Liu, Junhui Wang, Meichun Hsu, Malu
Castellanos, and Riddhiman Ghosh. 2013. Spotting opinion spammers using
behavioral footprints. In Proceedings of the ACM KDD.

[21] Arjun Mukherjee, Bing Liu, and Natalie Glance. 2012. Spotting Fake Reviewer
Groups in Consumer Reviews. In Proceedings of ACM WWW.

[22] Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Natalie Glance. 2013. What
Yelp Fake Review Filter Might Be Doing. In Proceedings of ICWSM.

[23] Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T. Hancock. 2011. Finding
deceptive opinion spam by any stretch of the imagination. In Proceedings of the
Human Language Technologies (HLT ’11).

[24] Rebekah Overdorf and Rachel Greenstadt. 2016. Blogs, Twitter Feeds, and Reddit
Comments: Cross-domain Authorship Attribution. PoPETs 2016, 3 (2016).

[25] Sarah Perez. 2016. Amazon bans incentivized reviews tied to free or discounted
products. Tech Crunch, https://tinyurl.com/zgn9sq3. (2016).

[26] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of ACM KDD.

[27] Huffington Post. 2012. Yelp Study Shows Extra Half-Star Nets Restaurants 19More
Reservations. Huffington Post, https://tinyurl.com/y7u32ssl. (2012).

[28] Mahmudur Rahman, Mizanur Rahman, Bogdan Carbunar, and Polo Chau. 2016.
Fairplay: Fraud and Malware Detection in Google Play. In Proceedings of SDM.

[29] Shebuti Rayana and Leman Akoglu. 2015. Collective opinion spam detection:
Bridging review networks and metadata. In Proceedings of ACM KDD.

[30] Chih-Ya Shen, Liang-Hao Huang, De-Nian Yang, Hong-Han Shuai, Wang-Chien
Lee, and Ming-Syan Chen. 2017. On Finding Socially Tenuous Groups for Online
Social Networks. In Proceedings of KDD.

[31] Charalampos E. Tsourakakis. 2015. The K-clique Densest Subgraph Problem. In
Proceedings of ACM WWW.

[32] Binghui Wang, Neil Zhenqiang Gong, and Hao Fu. 2017. GANG: Detecting
Fraudulent Users in Online Social Networks via Guilt-by-Association on Directed
Graphs. In Proceedings of ICDM.

[33] Zhen Xie and Sencun Zhu. 2014. GroupTie: Toward Hidden Collusion Group
Discovery in App Stores. In Proceedings of ACM WiSec.

[34] Zhen Xie and Sencun Zhu. 2015. AppWatcher: Unveiling the Underground
Market of Trading Mobile App Reviews. In Proceedings of ACM WiSec.

[35] Chao Yang, Robert Harkreader, Jialong Zhang, Seungwon Shin, and Guofei Gu.
2012. Analyzing spammers’ social networks for fun and profit: a case study of
cyber criminal ecosystem on Twitter. In Proceedings of ACM WWW.

[36] Junting Ye and Leman Akoglu. 2015. Discovering opinion spammer groups by
network footprints. In Machine Learning and Knowledge Discovery in Databases.

Session 6: Privacy, Bots and Automatic Methods HUMAN’18, July 9, 2018, Baltimore, MD, USA

182

http://www.freelancer.com
https://www.upwork.com
www.youtube.com/watch?v=5Od2SuL2igA
www.youtube.com/watch?v=5Od2SuL2igA
https://tinyurl.com/hklb5tk
https://www.fiverr.com/
https://www.openhub.net/p/jstylo
https://www.openhub.net/p/jstylo
https://tinyurl.com/zgn9sq3
https://tinyurl.com/y7u32ssl

	Abstract
	1 Introduction
	2 Study & Model Search Rank Fraud
	2.1 System and Adversary Model
	2.2 Motivation: Fraudster Capabilities
	2.3 A Study of Search Rank Fraud Jobs
	2.4 Fraudster Profile Collection (FPC)

	3 Fraud De-Anonymization System
	3.1 Problem Definition
	3.2 Solution Overview
	3.3 Fraud Component Detection (FCD) Module
	3.4 Component Attribution (CA) Module

	4 Empirical Evaluation
	4.1 Fraud vs. Honest Apps
	4.2 De-Anonymization Performance
	4.3 Dolos in the Wild

	5 MCDense Evaluation
	6 Conclusions
	7 Acknowledgments
	References



