
Scalable Architecture for Anomaly Detection
and Visualization in Power Generating Assets

Paras Jain∗, Chirag Tailor∗, Sam Ford∗, Liexiao (Richard) Ding‡, Michael Phillips‡,
Fang (Cherry) Liu§, Nagi Gebraeel‡, Duen Horng (Polo) Chau∗

∗College of Computing
‡H. Milton Stewart School of Industrial & Systems Engineering

§Partnership for an Advanced Computing Environment
Georgia Institute of Technology

Atlanta, Georgia, USA.
Email: {paras, chirag.tailor, sford100, richard.ding, mphillips68, polo}@gatech.edu,

fang.liu@oit.gatech.edu, nagi.gebraeel@isye.gatech.edu

Abstract—Power-generating assets (e.g., jet engines, gas tur-
bines) are often instrumented with tens to hundreds of sensors
for monitoring physical and performance degradation. Anomaly
detection algorithms highlight deviations from predetermined
benchmarks with the goal of detecting incipient faults.

We are developing an integrated system to address three key
challenges within analyzing sensor data from power-generating
assets: (1) difficulty in ingesting and analyzing data from large
numbers of machines; (2) prevalence of false alarms generated by
anomaly detection algorithms resulting in unnecessary downtime
and maintenance; and (3) lack of an integrated visualization that
helps users understand and explore the flagged anomalies and
relevant sensor context in the energy domain.

We present preliminary results and our key findings in
addressing these challenges. Our system’s scalable event ingestion
framework, based on OpenTSDB, ingests nearly 400,000 sensor
data samples per seconds using a 30 machine cluster. To reduce
false alarm rates, we leverage the False Discovery Rate (FDR)
algorithm which significantly reduces the number of false alarms.
Our visualization tool presents the anomalies and associated
content flagged by the FDR algorithm to inform users and
practitioners in their decision making process.

We believe our integrated platform will help reduce mainte-
nance costs significantly while increasing asset lifespan. We are
working to extend our system on multiple fronts, such as scaling
to more data and more compute nodes (70 in total).

Keywords—False discovery rate; visualization; OpenTSDB;
power asset; energy sensor

I. INTRODUCTION

To improve public safety, modern power generating assets
(e.g., jet engines, gas turbines) are instrumented with hundreds
of sensors to monitor physical performance degradation. Such
sensors, such as temperature or pressure, is installed with the
goal of measuring potential signals of asset failure. Given the
scale of data produced, it is impossible for humans to directly
monitor every signal. Instead, this monitoring process can be
automated by studying possible deviations from pre-specified
benchmarks, with the goal of detecting incipient faults.

Anomaly detection involves defining a pattern in observations
that represent normal behavior and declaring observations that
do not belong to that region as anomalies. A multitude of
detection algorithms and techniques have been developed and

commercialized over the years, many of which have been
applied in the manufacturing domain [1], [2] for what has
become known as Statistical Process Control (SPC).

In large scale settings involving thousands of power gener-
ating assets where each asset is monitored by a large number
of sensors, the problem of false alarms becomes a significant
challenge. False alarms can be very costly — for example,
50% of replaced parts in aircraft are classified as “no fault
found” [3]. In energy and aerospace domains, reducing rates
of false alarms can measurably reduce lifetime maintenance
costs for power generating assets.

Our goal is to develop an integrated system that reduces
false alarms in multi-stream condition monitoring of power
generating assets using a scalable analytics architecture that
ingests, stores and analyzes large amounts of sensor data, and
interactively visualize the computation results to enhance user
understanding and advance decision making capabilities.

Our ongoing work’s contributions are:
● We present a scalable event ingestion and storage architec-

ture that can handle 399,000 sensor samples per second
with a 30 node storage cluster.

● We adapt the FDR algorithm to the energy domain in
order to reduce the rate of falsely identified anomalies.

● We demonstrate a visualization tool that enables interactive
exploration of power-generating asset sensor data with
associated anomalies.

II. SYSTEM OVERVIEW

Our proposed architecture consists of three key components:
the anomaly detection algorithm, streaming sensor data inges-
tion, and interactive visualization. Figure 1 summarizes our
envisioned system architecture.

Data storage is non-trivial with large scale deployments
of assets generating huge volumes of data. Our system will
need to eventually scale to process hundreds of thousands of
sensor samples per second. After evaluating candidate storage
solutions, we chose to build our platform over the Open Time
Series Database (OpenTSDB) [4] to store both streaming sensor
data as well as flagged anomalies (Section III). OpenTSDB

Fig. 1. Overview of our system architecture, with a scalable Hadoop-based storage and anomaly detection backend, and an interactive visual frontend to aid
user understanding.

is supported by HBase [5] as the underlying distributed file
storage system.

The choice of anomaly detection algorithm is central to
the project. A survey [6] of techniques for anomaly detection
divides traditional algorithms into several categories: rule-based
systems, statistical techniques, spectral techniques and neural
networks. As the primary criteria for anomaly detection is to
control the rate of false positives, we specifically chose the False
Discovery Rate algorithm [7], [8] (described in section IV).
Offline evaluation of the anomaly detection algorithm currently
executes in the Spark framework [9] in batch mode. Given its
rich distributed matrix computation libraries, Spark is a natural
choice for evaluating the FDR algorithm.

Both the online anomaly detection and streaming sensor
data ingestion components run on the Data Science Platform
(DSP) [10] built at Georgia Tech College of Computing. The
online anamoly detection component runs on a 44 nodes
HDFS/Hadoop/Spark cluster, while the streaming sensor data
ingestion runs on a 32 nodes HDFS/HBase/OpenTSDB cluster.

Our visualization tool allows for operators to interactively
explore large volumes of time-series data (section V). By
enriching sensor data with potential anomalies and integrated
real-time analytics, the platform can serve as a powerful control
center to monitor faults across large sensor networks.

A. Evaluation Dataset

Real datasets from industry partners contain actual sensor
readings from power generating assets like gas turbine and
jet engines. However, these datasets often include sensitive
information, and currently are not available for off-site evalua-
tion. As our very first goals of developing the system are to
investigate the algorithmic scalability, visualization capabilities,
and hardware platform requirements, access to a real dataset is
not critical to our current stage of investigation. Therefore, we
generated a dataset for training and evaluation of the algorithm.
This allows measuring the exact degree to which FDR reduces
false alarm rates while allowing us to verify the algorithms
ability to detect various classes of injected faults.

The training dataset contains 100 simulated units, each with
1000 sensors (on order with the 3000 sensors in the Siemens

SGT5-8000H gas turbine [11]). We modeled three primary
categories of faults:
● Pure random noise for comparison
● Pure random noise plus gradual degradation signal
● Pure random noise plus sharp shift
Injected faults are correlated across sensors which allows

measuring the algorithm’s response to deviations across multi-
ple signals.

III. SCALABLE DATA INGESTION & STORAGE

Processing and storing sensor samples is non-trivial at the
scale of a production deployment. We expect our system will
need to ingest and analyze at least 100,000 sensor samples per
second (based on estimation in subsection II-A, assuming each
sensor will generate data at 1Hz).

This project utilizes OpenTSDB [4], an open-source, scalable,
time series database which leverages HBase [5], an Apache top
level project inspired by Google’s BigTable [12], to manage
data in a distributed manner and provide horizontal scalability.
We chose OpenTSDB because it allows us to easily horizontally
scale out our system to more storage nodes, while maintaining
a stable, linear scaleup in streaming ingestion (as we shall
describe in Section III-B).

A. Streaming Event Ingestion and Storage using OpenTSDB

For the purposes of this preliminary work, a distributed
system of 32 nodes was deployed running HDFS and HBase.
HDFS was set up with one NameNode (co-running Hbase
master), one Secondary NameNode, one Hbase backup master
and 29 DataNodes. HBase is configured with one HMaster,
one BackupHMaster, and 29 Regionservers that communicate
through the built-in Apache Zookeeper [13] coordination
service. Each node is also running an instance of a TSD
Daemon for time series data writing and querying.

OpenTSDB organizes time series data into metrics and
allows for the assignment of multiple tags per metric. The
tags provide unique identifiers for querying data and allow the
data to be compartmentalized into sub series. The simulated
data generated for this project is stored into a metric called
“energy” with tags for “unit ID” and “sensor ID”. Associated
metadata for a particular unit and sensor is stored though

0

4

8

12

16

20

0 20 40 60 80 100 120

10
no
de
s

15
no
de
s

20
no
de
s

25
no
de
s

30
no
de
s

Ingestion duration (sec)

Samples ingested
(millions)

0

100,000

200,000

300,000

400,000

0 10 20 30 40

20 nodes
257k samples / sec

15 nodes
233k samples / sec

10 nodes
173k samples / sec

25 nodes
325k samples / sec

30 nodes
399k samples / sec

of Nodes

Throughput
(samples per second)

Fig. 2. Left: Ingestion rates achieved as the ingestion framework was ramped up from 10 machines to 30 machines. The system scales linearly, with each
added machine increasing throughput by 11K samples per second on average. Right: The line graph of sensor samples ingested versus the ingestion duration
shows a constant and stable ingestion rate for each configuration of the framework.

configuration in JSON outside the time series database, which
allows configuration updates to be managed in version control.

For storing data, the TSD Daemon takes a metric, timestamp,
data value, and tag identifiers as input and produces an entry to
be written to an HBase table. First, the key is generated from
a binary encoding of the metric, timestamp, and tag values.
Then, the TSD Daemon submits an RPC call to HBase which
distributes the write based upon the key value. The writes
for similar keys are grouped onto the same Regionserver by
HBase.

B. Preliminary Results & Key Findings

Linear Scale-up. We tested our event ingestion framework
with the evaluation dataset (described in Section II-A, consist-
ing of 100 assets with 1000 sensors each). Figure 2a shows the
ingestion rate scales up linearly with the number of machines.
Each machine runs one HBase RegionServer instance and
one OpenTSDB daemon. The ingestion rate reaches 300,000
samples per second with 30 machines, while maintaining a
stable ingestion speed, shown in Figure 2b.
OpenTSDB Key Design. One obstacle encountered early in
the ingestion process was an issue with these writes not
being distributed across all the HBase Regionservers efficiently.
Since sequential data values share the same metric and similar
timestamp values, their binary encoded keys are also similar
resulting in the RPC calls being sent to the same HBase
Regionserver. To combat this, the binary key encodings were
salted with an additional uniformly randomly generated byte
at the beginning to create unique keys for chronological
data values. Additionally, HBase regions were manually split
to ensure each region handled an equal proportion of the
writes. Salting the keys allowed for the full utilization of all

the deployed HBase Regionservers and provided a dramatic
increase to the ingestion rate.
Buffering Requests for Backpressure and Scalability. An-
other obstacle encountered while working with OpenTSDB and
HBase was frequent crashes of Regionservers due to overloaded
RPC Queues. Initially, the cause of these crashes was attributed
to HBase having no means of providing back pressure to RPC
calls made by OpenTSDB. To remedy this, we built a reverse
proxy to buffer requests to OpenTSDB in order to limit the
number of concurrent requests. Compaction was also disabled
on OpenTSDB to reduce RPC calls to HBase. This proxy also
serves to increase ingestion throughput by load-balancing traffic
to multiple ingestion processes. Ingestion throughput scales
horizontally by distributing the requests to the OpenTSDB
nodes via a round-robin fashion.

IV. FLAGGING ANOMALIES WITH
LOW FALSE ALARM RATES

A key component in our system is the algorithm to flag
potential anomalies. Given the large expense caused by
erroneously flagged faults, we aim to use an anomaly detection
algorithm that balances identifying the majority of true faults
while also controlling the rate of false alarms.

From a statistical standpoint, anomaly detection amounts
to performing a hypothesis test on sample observations to
detect possible shifts in the mean of the sampling distribution.
Rejection of the null hypothesis implies that there is significant
evidence to conclude that the distribution has indeed changed.
A common mistake committed in hypothesis testing is to reject
the null hypothesis when it is actually true (type I error).

In our setting, a type I error amounts to a false alarm, i.e.,
an equipment is classified as faulty when in reality there was

Fig. 3. A web application shows sensor readings across all machine and sensors. For machine 17, the timeline at the top visualizes correlated anomalous
events across all sensors. A detailed view of each sensor’s time series with associated anomalies is displayed at the bottom.

nothing wrong. One of the key aspects of type I errors is
that they tend to increase as the number of hypothesis tests
increases. In our context, this translates to higher false alarm
rates as the number of sensors increases. For example, for a
single sensor with an allowable α = 0.05, the probability of
making at least one false alarm is 5%. However, if we increase
the number of sensors to 10 sensors each with α = 0.05, that
probability jumps to 40% , i.e., 1 − (1 − α)10 = 0.4.

Traditionally, false alarms in multi-inference studies were
controlled using family-wise error rate (FWER). FWER focuses
on controlling the probability of committing any type I error
when performing multiple hypothesis tests by applying a
correction to a family of inferences. A popular example is the
Bonferroni correction [14] where for m hypotheses each having
a probability α of committing type I error, then the corrected
probability for the family would be α/m. In other words, reject
all hypotheses with p-values ≤ α/m. One drawback of this
approach was that it provided much less detection power and
was overly conservative.

FDR was first introduced by Benjamini and Hochberg in
1995 [7], [8]. The goal was to reduce false alarms in multiple
inferences (hypothesis tests) in clinical trials. Compared to
FWER, FDR was designed to control the expected proportion
of type I errors.

The underlying premise of FDR is that when multiple tested
hypotheses are rejected, it is more important to control the
proportion of errors (wrong rejections) than it is a single
erroneous rejection. As we wish to balance the rate of type I
and type II errors, FDR is a promising option for a choice of
algorithm for preliminary testing.

Production latency and throughput requirements necessitates
that the chosen anomaly detection algorithm be scalable. The
FDR algorithm is easy to scale using distributing matrix
computation provided by Spark’s MLlib. This property makes
FDR more attractive than more complex algorithms.

A. Preliminary Results

Our implementation of the FDR algorithm is composed
of two parts — an offline training component and an online
evaluation component. Offline training occurs in Spark, running
in batch mode. Spark’s MLlib [15] provides an implementation
of distributed matrix factorization, which allows our offline
training system to scale to large numbers of sensors. Once
training is complete, we can evaluate for anomalies at a rate
of 939,000 sensor samples per second on average.

In offline training, model estimation of each sensor on each
unit begins by calculating the covariance matrix of each data
set. Singular Value Decomposition is then performed on each
covariance matrix to obtain the mean and variance. Results
from the decomposition are cached to HDFS. Evaluation is
thereby relatively fast requiring a single matrix multiplication
per iteration. Results from online evaluation are reported back
to OpenTSDB for use by the integrated visualization tool. The
current system can deal with one machine at a time and we
plan to utilize concurrency of Spark to scale up workload.

V. ANOMALY VISUALIZATION

Advanced anomaly detection without commensurate visu-
alization presents limited value for operators. Our platform
includes an interactive visualization tool that equips users to
quickly respond to flagged anomalies. Our tool integrates A)
live sensor data, B) highlighted anomalies, and C) real-time
system analytics into a single control center for users to monitor
and react to events in a network of power-generating assets.

A. Preliminary Results

Our tool provides an overview of the overall health of the
network of power-generating assets. It helps users explore
and understand the context surrounding the flagged anomalies.
By using the FDR anomaly detection algorithm, we avoid
unnecessarily notifying users of false alarms.

Analytics summarize global system status across a large
deployment of power-generating assets. By selectively surfacing
the most concerning anomalies, we allow users to focus only
on what is important. Anomalous machines are clearly marked
in a single list on the left of Figure 3, allowing operators to
quickly check system health.

Power-generating asset faults often result in correlated
anomalies across multiple sensors (e.g., pressure and tem-
perature). Our tool displays a summary of detected correlated
anomalies in a single timeline at the top of Figure 3.

Drill-down capabilities enable users to quickly examine
details about a fault with necessary context. Clicking on a
particular event in the machine-wide status timeline at the top of
the application displays detailed time series for relevant sensors
at the bottom of the page. This allows operators to quickly
view local context surrounding an anomaly with visualizations
for all relevant sensors. Operators can filter the list of displayed
sensor time-series to only anomalous sensors, all sensors or
some custom subset of sensors.

The visualization tool is a web application that is available
on both desktop and mobile devices. Mobile access allows
technicians to explore pertinent sensor data while performing
maintenance on a particular machine in the field.

VI. CONCLUSION & ONGOING WORK

We present our preliminary work and key findings in
developing an integrated system to address three key challenges
within analyzing sensor data from power-generating assets: (1)
difficulty in ingesting and analyzing data from large numbers of
machines; (2) prevalence of false alarms generated by anomaly
detection algorithms resulting in unnecessary downtime and
maintenance; and (3) lack of an integrated visualization that
helps users understand and explore the flagged anomalies and
relevant sensor context in the energy domain. Our system can
currently ingest and analyze 399,000 sensor samples per second
while running on a 30 node cluster. The system visualizes
sensor data in an interactive web application which presents
potential anomalies with the associated context surrounding
the event.

Ongoing work for the project includes: experimenting
with increasing storage nodes to further scale up throughput,
migrating our anomaly detection implementation to Spark
Streaming [16] for online training, and evaluating our system
with domain users through our collaboration with industry
partners like General Electric (GE) to test the system on their
datasets.

ACKNOWLEDGMENT

This work is supported in part by the Strategic Energy
Institute (SEI) at Georgia Tech, and NSF grants IIS-1563816,
TWC-1526254, IIS-1217559. We also thank Yahoo! for their
generous 200-machine donation. We thank Will Powell on
hardware support for our system.

REFERENCES

[1] R. Isermann, Fault-diagnosis applications : model-based condition
monitoring: actuators, drives, machinery, plants, sensors, and fault-
tolerant systems. Berlin Heidelberg New York: Springer, 2011.

[2] L. Chiang, Fault Detection and Diagnosis in Industrial Systems. London:
Springer London, 2001.

[3] P. Sderholm, “A system view of the no fault found (nff) phenomenon,”
Reliability Engineering & System Safety, vol. 92, no. 1, pp. 1 – 14,
2007. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0951832005002139

[4] “Opentsdb : The scalable time series database, http://opentsdb.net/,” 2016.
[5] “Apache hbase : A distributed, scalable, big data store,

https://hbase.apache.org/,” 2016.
[6] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”

ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.
[7] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:

a practical and powerful approach to multiple testing,” Journal of the
royal statistical society. Series B (Methodological), pp. 289–300, 1995.

[8] Y. Benjamini and D. Yekutieli, “The control of the false discovery rate in
multiple testing under dependency,” Annals of statistics, pp. 1165–1188,
2001.

[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets.”

[10] F. C. Liu, F. Shen, D. H. Chau, N. Bright, and M. Belgin, “Building a
research data science platform from industrial machines,” 3rd Workshop
on Advances in Software and Hardware for Big Data to Knowledge
Discovery (ASH) co-located with IEEE Big Data Conference, 2016.

[11] P. Ratliff, P. Garbett, and W. Fischer, “The new siemens gas turbine
sgt5-8000h for more customer benefit,” VGB powertech, vol. 87, no. 9,
pp. 128–132, 2007.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” ACM Transactions on Computer Systems
(TOCS), vol. 26, no. 2, p. 4, 2008.

[13] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX Annual Technical
Conference, vol. 8, 2010, p. 9.

[14] O. J. Dunn, “Multiple comparisons among means,” Journal of the
American Statistical Association, vol. 56, no. 293, pp. 52–64, 1961.

[15] X. Meng, J. Bradley, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning in apache
spark,” 2016.

[16] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 2013, pp. 423–438.

http://www.sciencedirect.com/science/article/pii/S0951832005002139
http://www.sciencedirect.com/science/article/pii/S0951832005002139

