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Objective: A significant challenge in treating rare forms of cancer such as Glioblastoma (GBM) is to find
optimal personalized treatment plans for patients. The goals of our study is to predict which patients
survive longer than the median survival time for GBM based on clinical and genomic factors, and to assess
the predictive power of treatment patterns.
Method: We developed a predictive model based on the clinical and genomic data from approximately
300 newly diagnosed GBM patients for a period of 2 years. We proposed sequential mining algorithms
with novel clinical constraints, namely, ‘exact-order’ and ‘temporal overlap’ constraints, to extract treat-
ment patterns as features used in predictive modeling. With diverse features from clinical, genomic infor-
mation and treatment patterns, we applied both logistic regression model and Cox regression to model
patient survival outcome.
Results: The most predictive features influencing the survival period of GBM patients included mRNA
expression levels of certain genes, some clinical characteristics such as age, Karnofsky performance score,
and therapeutic agents prescribed in treatment patterns. Our models achieved c-statistic of 0.85 for logis-
tic regression and 0.84 for Cox regression.
Conclusions: We demonstrated the importance of diverse sources of features in predicting GBM patient
survival outcome. The predictive model presented in this study is a preliminary step in a long-term plan
of developing personalized treatment plans for GBM patients that can later be extended to other types of
cancers.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Glioblastoma (GBM) is the most lethal and biologically the most
aggressive brain cancer with patients having a median survival of
12–15 months [10,29]. Understanding what factors prolong
survival and promote treatment responses can be of value to
patients and physicians. The Cancer Genome Atlas (TCGA) [17], a
project of the National Institutes of Health (NIH), classified
Glioblastoma patients into four distinct molecular subtypes affect-
ing biological behaviors, suggesting that no single therapeutic
regimen can be equally effective for all subtypes [6]. Patients with
certain molecular subtypes may have greater overall survival than
other patient subtypes, and analyzing gene expression levels, copy
number variation (CNV), and mutations may give us information
correlating to survival periods. The current standard of care for
new GBM patients involves surgical resection followed by radia-
tion therapy and chemotherapy with the oral alkylating agent
Temodar [20]. Krex et al. [12] and Walid [33] have analyzed newly
diagnosed GBM patients undergoing therapy and discovered cer-
tain clinical and molecular features, which play a significant role
in prolonging the survival period. Predictive models have been
developed in the past utilizing imaging and clinical features of
patients [14] and there also exists ongoing clinical trials on certain
drugs to test their effect on survival [34] but to our knowledge
there is a lack of comprehensive data-driven work in this space
which studies the impact of clinical features, genomic features
along with patterns in treatment together on the survival of
Glioblastoma patients.

The high mortality rate of GBM patients, where long-term
survival is a rare phenomenon, has drawn significant attention to
improving treatment of these tumors. After the first line standard
of care treatment, there are different treatment combinations
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chosen by oncologists. The sequence in which the next set of drugs
or therapy is prescribed adds to the level of complexity since drugs
given in a particular sequence may have a better therapeutic effect
than the same drugs given in some other order. Furthermore, other
drugs such as steroids and antiepileptics are administered in
conjunction while treating GBM, which adds another layer of
complexity. We believe analyzing the treatment plans of patients
from the TCGA will provide insight into treatment patterns, which
may be associated with greater overall patient survival. Based on
our knowledge, there is no existing literature that analyzes treat-
ment patterns that may influence survival for new GBM patients.
The proposed approach is general and can be used for other clinical
settings.

1.1. Contributions

Our study makes the following contributions:

1. We introduce a novel graph approach to extend existing
sequential pattern mining algorithms for a clinical predictive
modeling application.

2. We extended existing sequential pattern mining algorithms by
incorporating two additional constraints called the ‘exact-order’
and ‘overlap’, which can generate more clinically meaningful
treatment patterns.

3. We followed a data-driven approach to build and evaluate a
predictive model for treatment effectiveness of GBM patients
by treating temporal treatment patterns as features in addition
to the existing clinical and genomic features.

2. Related work

2.1. Influence of genomic factors on GBM

High dimensional gene expression profiling studies in GBM
patients have identified gene signatures associated with epidermal
growth factor receptor (EGFR) overexpression and survival [5,13,
15,16,19,22,25–27]. Genomic abnormalities associated with TP53
and RB1 mutations have been identified in TCGA along with
GBM-associated mutations in genes such as PIK3R1, NF1, and
ERBB2. CNV and mutation data on TP53, RB, and receptor tyrosine
kinase pathways revealed that the majority of GBM tumors have
abnormalities in all these pathways suggesting this is a core
requirement for GBM pathogenesis [28]. However, no one system-
atically tests those genomic factors together with clinical and
treatment information for predicting GBM survival outcome,
which is a focus of this paper.

2.2. Sequential pattern mining

Sequential pattern mining refers to the mining of frequently
occurring ordered events or subsequences as patterns [11]. This
technique, introduced by Agarwal and Srikant [1] in their 1995
study of customer purchase sequences, led to the development of
the Generalized Sequential Pattern mining (GSP) algorithm which
is based on the Apriori [35] algorithm to mine frequent itemsets.
GSP uses the downward-closure property of sequential patterns
and adopts a multiple-pass, candidate generation approach.
Initially it finds all the frequent sequences of length one item with
minimum support. Subsequently it combines every possible
1-item itemset which has the minimum support for the next pass.
Besides GSP, another popular sequential mining algorithm is
SPADE (Sequential PAttern Discovery using Equivalent classes)
[30] which uses a vertical id-list database format data format
and associates each sequence a list of transactions in which it
occurs. The frequent sequences can be found by efficiently using
intersection on id-lists. Bellazi et al. [31] have worked on generat-
ing temporal association rules using an Apriori approach to help
improve care delivery for specific pathologies. These rules consist
of antecedents and consequents signifying that if the antecedent
occurs then the consequent would also occur with a certain prob-
ability. Another algorithm, which is based on temporal association
rules is KarmaLego [32]. This is a fast time-interval mining method,
which exploits the transitivity inherent in temporal relations. The
other sequential pattern mining algorithms are based on the
‘Pattern Growth’ technique of frequent patterns avoiding the need
for candidate generation unlike GSP and SPADE which are based on
Apriori. This approach involves finding frequent single items, and
condensing this information into a frequent pattern tree. PrefixS-
pan [8,21] is one such algorithm which exploits this approach by
building prefix patterns and concatenating them with suffix
patterns and concatenating them with suffix patterns to find
frequent patterns. SPAM (Sequential PAttern Mining using a
bitmap representation) [2] uses a depth-first traversal of the search
space with various pruning mechanisms and a vertical bitmap
representation of the database enabling efficient support counting.
Our approach is very minimally inspired by Apriori and reads the
data as a graph of events to mine only those sequences which exist
in the graph instead of analyzing all possible combination of
events. To properly apply treatment pattern mining, we introduce
several important constraints such as ‘exact-order’ and ‘overlap’.
3. Approach

3.1. Data

We constructed a rich dataset of newly diagnosed GBM patients
by integrating two different databases called the TCGA [17] and the
cBioPortal [4,7]. TCGA consists of clinical and treatment data pooled
together from different research teams, which is publicly accessi-
ble. The genomic data for the same patients was obtained from
cBioPortal, a web resource of multidimensional cancer genomics
data maintained by the Memorial Sloan Kettering Cancer Center.

3.1.1. Features
For our study, we analyzed data from 309 newly diagnosed

GBM patients spanning over a period of 2 years from the date of
diagnosis. The data was categorized into ‘Clinical’, ‘Genomic’ and
‘Treatment’ domains. The clinical domain includes demographic
information about the patient along with basic clinical features
such as Karnofsky Performance Score (KPS), histopathology, prior
glioma history, and whether the patient is alive or deceased. Under
the genomic domain, the mRNA expression levels and CNV data
was collected for a specific set of genes which play a role in classi-
fying GBM patients into 4 genomic subtypes, namely, ‘Classical’,
‘Mesenchymal’, ‘Proneural’, and ‘Neural’ [28]. The log2 copy num-
ber values were collected from Affymetric SNP6 for each gene
and for mRNA expression, Z-scores were used from Agilent
microarray. The methylation status of the promoter region of the
MGMT gene was also used for our analysis [9]. The treatment
domain consists of treatment plans for each patient, which can
be viewed as process data. We use sequential mining algorithms
to mine significant patterns in their treatment plans and use them
as features in the dataset in addition to clinical and genomic fea-
tures. Table 1 summarizes the dimensions of the dataset catego-
rized by the domain.

3.1.2. Target variable
The goal of this study is to apply our extended modeling proto-

col to effectively predict patients used for model validation who
survived for greater than 12 months. The pool of patients used



Table 1
Summary of the dataset.

Feature statistics Number of features

Clinical domain 11
Genomic domain 33
Treatment domain 49

Total: 93

Data statistics
Number of patients 309
Patients surviving more than a year 140
Patients surviving for less than a year 169
Race White (243), Black (42), Asian (24)
Gender Male (229), Females (80)
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for the study consists of living patients who have already survived
for more than a year in addition to the deceased patients that
constitute the majority of patients.

3.2. Methodology

This section gives an overview of the predictive modeling pipe-
line developed to predict long term surviving patients.

3.2.1. Predictive modeling pipeline
The predictive modeling pipeline consists of 4 modules, namely,

‘Data Standardization and Cleaning’, ‘Sequential Pattern Mining’,
‘Feature Construction’ and ‘Prediction and Evaluation’. As shown
in Fig. 1, the raw data is fed into the ‘Data Standardization and
Cleaning’ module to filter out noisy data. The ‘Sequential Pattern
Fig. 1. Predictive mo
Mining’ module extracts significant medication patterns from the
treatment data including the standard of treatment. The clinical
and genomic features are combined with these medication
patterns to form a binary feature matrix in the ‘Feature Construc-
tion’ module, with each row corresponding to a single patient. It
also assigns a target variable for every patient. The ‘Prediction
and Evaluation’ module selects predictive features and performs
classification to predict the long term surviving patients.
3.2.2. Data standardization and cleaning
Data standardization is one of the most important and time

consuming steps when building predictive models. Every hospital
contributing data to TCGA uses a different format to store data
and in some cases a different nomenclature is used for some data
elements. For instance for drug names we observed instances of
both generic names and trade names. The Anatomic Therapeutic
Chemical Classification (ATC) System which is the one of the most
commonly used taxonomy for drugs was initially considered to
map the drug names to ATC defined codes. We observed that
ATC sometimes has multiple codes for a single drug since it is
dependent on therapeutic use of the drug and some drugs have
multiple therapeutic uses. E.g. Prednisone has two ATC codes asso-
ciated with it namely A07EA03 and H02AB07 and Sirolimus also
has two ATC codes L04AA10 and S01XA23. Another approach to
standardize the drugs involved generalizing the drug names into
broader categories but that would have resulted in reducing the
inter drug variability as the distinct number of drugs in our dataset
was small (approximately 100). Due to all the above consideration
we chose to convert all the drug names to generic names manually.
deling pipeline.
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For certain fields such as ‘additional chemotherapy’ which had bin-
ary values ‘1’ signifying the fact that additional chemotherapy was
done for a particular patient and ‘0’ signifying otherwise, we found
keywords such as ‘Completed’ and ‘Not Applicable’. Based on
consultation with the oncologists we decided to replace the value
‘Completed’ with binary ‘1’ since it means that additional
chemotherapy was completed for that patient. The value ‘Not
Applicable’ in this case was replaced with binary ‘0’ since it signi-
fies that additional chemotherapy was never done for this patient
and thus was not applicable.

Missing data is another common issue. For instance, 10% of data
records had missing values for either start or end dates of specific
drugs which were imputed based on the mean duration of that
drug for other patients since the variance in the duration was
small. The data standardization module identifies these different
data formats, missing values, and creates a standardized clean data
set for further analysis. This module has been customized to clean
data coming from TCGA and would require changes when dealing
with other datasets.
3.2.3. Sequential pattern mining
The data used for this study is modeled as a graph consisting of

nodes, categorized as ‘patient node’ and ‘treatment type node’, and
edges categorized as, ‘prescription edge’ and ‘sequence edge’. A
graph offers a much richer model of the underlying data, and
allows relationships of several types. The graph we constructed
provides a good way to model event sequences and their temporal
relationships [24]. For illustrative purposes, Fig. 2 shows the cur-
rent representation of the data as a graph consisting of two
patients. The patient nodes have properties such as ‘patient id’
and ‘age at diagnosis’. Prescribed drugs and radiotherapy are repre-
sented as treatment type nodes with properties ‘drug name’ and
‘radiation type’ respectively. The undirected ‘prescription edge’
signifies the prescription of a treatment with properties corre-
Fig. 2. Data represented a
sponding to the prescription. The ‘sequence edge’ is a directed edge
signifying the sequence in which drugs or radiation were
prescribed. For example, the edge labeled ‘Prescribed’ between
the patient node with ‘id = Patient_1’ and the drug node with
‘drugName = Drug_A’ signifies that ‘Patient_1’ was prescribed
200 mg/day of ‘Drug_A’ between 05/21/2007 and 06/22/2007.
The edge labeled ‘Followed_by’ would always be between a radia-
tion type and a drug, two drugs or two radiation types, signifying
the sequence of the prescription. For example, the ‘Followed_by’
edge between source node ‘Drug_A’ and target node ‘Drug_B’ with
properties ‘patient’ and ‘overlap’ signifies that for ‘Patient_1’,
Drug_B followed Drug_A with an overlap of 24 days.

Sequential pattern mining was used to extract patterns from
the treatment data to give two types of information for every
patient: the sequence of drugs/radiation prescribed and their time
of prescription within the sequence.

A treatment plan for a patient may consist of a combination of
multiple drugs or radiation or both prescribed in a particular
sequence. We define a treatment for one patient as a sequence of
events, each event consisting of administration of a treatment type
(drug or radiation). To mine such treatment plans, we tailor
existing approaches such as GSP [1] and SPADE [30] by adding
two new constraints, namely, ‘exact-order’ and ‘overlap’
constraints (explained in the following sections). We define a con-
cept of ‘N-path event set’, consisting of a sequence of ‘N + 1’ events
(treatment instances) joined by ‘N’ sequence edges. For example,
Drug_A? Drug_B? Radiation_D is a 2-path event set from the
graph model shown in Fig. 2, consisting of two drugs and a radia-
tion therapy forming a sequence of consecutive events (repre-
sented as nodes), which is not a hard restriction in any of the
existing algorithms. Since a treatment plan for a patient may
consist of a drug being prescribed more than once, an event iden-
tifier is added along with each treatment type node to satisfy the
‘exact-order’ constraint. The current implementation does not con-
sider dosage of the drug or radiation therapy due to missing dosage
s a treatment graph.
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units for many therapies. The pseudo-code in Algorithm 1 provides
the details of the proposed approach.

Algorithm 1 MineTreatmentPatterns

Input: Graph of events, minSup

Output: Frequent Sequences

1: N Length of path

2: minSup minimum support

3: N = 1

4: REPEAT Steps 5 to 12 UNTILL size of N + 1th path

pool = 0;

5: S Set of N-path sequences of treatment events

with supportP minSup

6: for all sequence s 2 S do

7: for all sequence s’ 2 S - s do

8: A first N treatment events of s’

9: B last N treatment events of s

10: if A = B && frequency of N + 1th

sequence > minSup then

11: add N + 1th sequence to N+1 path pool

12: Increment N
3.2.3.1. Exact-order constraint. This constraint forces only those
events to be a part of sequence, which occur consecutively. If there
are multiple other drugs given between 2 drugs ‘A’ and ‘B’, then a
sequence hABi does not occur. Such a constraint holds a lot of signif-
icance in the treatment domain since even though the sequence
hA Bi with other drugs in between can occur frequently, clinically
it may not hold any relevance since the intermediary drugs may
or may not affect the outcome. This particular constraint was not
implemented in traditional sequentialmining algorithms. To imple-
ment this constraint, we annotate the treatment type nodes with
event identifiers signifying the time of occurrence of that event.

3.2.3.2. Candidate generation. We extract path sequences of length
‘N’ from the treatment graph and consider the ones prescribed to
Fig. 3. Illustration of can
a significant number of patients for further analysis. This is
followed by forming ‘N + 1’ path sequences, by increasing the
path-length one edge at a time, and joining on the event IDs and
the treatment type nodes. Fig. 3 illustrates the candidate genera-
tion step, each node representing a treatment type or a combina-
tion of treatment types. Initially a 1-path set consisting of
combinations of two consecutive treatment types is extracted from
the treatment graph such that the sequences should have been
prescribed to a significant number of patients i.e. the sequences
have a support value greater than a pre-specified threshold. From
these 1-path sets, we form 2-path combinations by joining on
the treatment type node and the event ID. The combinations brack-
eted in green have the potential to be joined since the resulting
sequence has consecutive events. The ones bracketed in red are
not joined since event ‘A’ as the fourth event is different from event
‘A’ as the second event. This process continues till we cannot form
new combinations or they are insignificant.
3.2.3.3. Overlap constraint. A ‘treatment plan’ for a patient consists
of all the treatment types prescribed to a patient in a sequence.
When a treatment is in effect and another one starts concurrently,
an overlap of treatments occurs. Two common situations are
‘partial overlap’ and ‘total overlap’ of prescriptions. We say ‘n’
prescriptions (n > 1) have a partial overlap if all the ‘n’ prescrip-
tions are concurrently prescribed to a patient on at least one day.
A total overlap is a special case of partial overlap that occurs when
all the ‘n’ prescriptions have the same start and end dates.
Approaches called the ‘‘Single Node” and ‘‘Combination Node”
approach are formulated for handling overlap constraints. In the
‘Single Node’ approach, a sequence considers each treatment type
as a single node as shown in Fig. 4(a). If there is a partial overlap
between two prescribed treatment types, the prescription that
ends first becomes the source node and a directed edge connects
it to the other prescription. For example, a directed edge connects
‘Dexamethasone’ to ‘Radiation.’ In the case of a total overlap
between two prescriptions, both prescriptions are treated as
source nodes, with directed edges leading to the next treatment
didate generation.



Fig. 4. Approaches for treatment plan generation. (a) Single node approach. (b) Combination node approach.
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type node. For example, there are directed edges from ‘Temodar’
and ‘Radiation’ toward Lomustine.

The ‘overlap’ constraint refers to an overlap between multiple
drug prescriptions and results in combining those drugs into a
single node and treating it as a single event.

Under the approach called the ‘Combination Node’ approach
shown in Fig. 4(b) a new node is created whether there is a partial
or a total overlap between treatment type prescriptions. The signif-
icance of such a combination node approach is to retain the poten-
tial information hidden in the fact that concomitant treatment may
be clinically more relevant in some situations that mono therapies.
The timeline shown in the figure signifies the order of prescriptions.
The purple colored nodes represent individual drugs and the green
nodes are created to signify overlapping prescriptions. The combi-
nation node approach should not be used in cases where there
exists a lot of variety in the combinations being created since it will
result in lesser support value. For such data sets the single node
approach works better since it functions only on the existing nodes.
The current approach is based on data about GBM patients and
would be enhanced for other diseases having extensive treatment
guidelines and possibly incorporating potential complications.
3.2.4. Feature and Cohort construction
We construct a feature matrix with a feature vector per patient

and a target variable that represents the targeted outcome of treat-
ment. The clinical and the genomic features used for the study are
extracted at the time of diagnosis for every patient. The treatment
patterns are extracted from therapies prescribed within 6 months
from diagnosis. Since the data consists of both numeric and cate-
gorical data types we convert the dataset into a binary feature
matrix. Each binary feature indicates whether the corresponding
clinical, genomic or treatment patterns are present (value 1) or
not (value 0). The target variable in our study is constructed based
on the patient’s survival period. Deceased patients who survived
for more than a year are assigned a target variable of 1 and those
who survived for less than a year are assigned 0. For living patients,
if their last follow up date was after one year of diagnosis, they
were assigned a target variable of 1 otherwise that patient was
not considered for this study since there is no positive conclusion
about survival period. We also use time to event as the alternative
outcome for Cox Regression.

3.2.5. Prediction and evaluation
Our goal is to use all the relevant features to predict if patients

would survive for longer than a year. 10-fold cross validation is
used to partition the data into a training set and a test set multiple
times and evaluate the classifier. To avoid overfitting, we make
sure sequential patterns are re-evaluated for each training set
and then test against the blind test set. No information from test
set is used in extracting sequential patterns. In this case, for every
iteration of the cross validation the sequential treatment patterns
are extracted from the treatment plans of patients in the training
set and used as features along with other clinical and genomic
features to be tested on the test set. Forward feature selection
method is used to prune out irrelevant features and keep the top
10 relevant predictive features to be used by the predictive model.
Since the outcome variable has been engineered to be a binomial
variable we trained a Logistic Regression based classifier. We also
developed a Cox Regression model using the time lapsed between
the first visit of the patient and the date of death as the survival
time. The same feature selection process is applied for both Logistic
Regression and Cox Regression.

4. Results

In this section, we present the quantitative results of the predic-
tive models as well as qualitative results for the selected features.



Table 2
Performance of various models in predicting patients surviving for >1 year using Logistic Regression (LR) and Cox Regression (CR).

Single node approach Combination node approach

C-statistic Accuracy (%) Precision Recall C-statistic Accuracy (%) Precision Recall

LR CR LR CR LR CR LR CR

Individual domain models
Genomic 0.76 0.75 78.1 78.0 0.72 0.74 0.76 0.75 78.1 78.0 0.72 0.74
Clinical 0.71 0.71 72.2 72.3 0.70 0.75 0.71 0.71 72.2 72.3 0.70 0.75
Treatment 0.69 0.70 71.2 72.0 0.67 0.66 0.60 0.61 63.3 63.1 0.68 0.66

Multiple domain models
Clinical + genomic + treatment 0.85 0.84 86.4 86.7 0.75 0.74 0.85 0.84 86.2 87.0 0.74 0.76
Treatment + genomic 0.84 0.86 84.8 84.3 0.69 0.67 0.78 0.78 81.0 81.1 0.68 0.69
Clinical + genomic 0.83 0.83 84.5 84.7 0.73 0.74 0.83 0.83 84.5 84.7 0.73 0.74
Clinical + treatment 0.78 0.79 78.6 77.8 0.67 0.68 0.75 0.76 74.5 74.3 0.66 0.70

Table 3
Predictive clinical and genomic features from the model: Clinical + genomic + treatment. The sign (+/�) shown in the table signifies positive or
negative influence on the outcome.

Predictive features Percentage of times selected (%) Influence on survival >1 year P-value

Genomic
Unmethylated MGMT promoter region 40 � 0.05
High expression of TP53 gene 40 � 0.03
High expression of GABRA1 gene 40 + <0.0001

Clinical
Patient’s age at diagnosis between 25 & 50 years 40 + 0.018
Karnofsky performance score >70 40 + 0.02
Prescription of Neoadjuvant therapy 30 + 0.002

Table 4
Predictive treatment patterns. The sign (+/�) shown in the table signifies positive or negative influence on the outcome.

Predictive treatment patterns Percentage of
times selected (%)

Influence on
survival >1 year

P-value

Single node approach Radiation Therapy{2} ? Treatment Termination 50 � 0.0061
Lomustine{2}? Treatment Termination 40 � 0.05
Procarbazine{2} ? Treatment Termination 30 + 0.05
Temozolomide{2} ? Lomustine{3} 40 + 0.04

Combination node approach Temozolomide{1} ? [Temozolomide + Radiation]{2} 30 � 0.05
[Temozolomide + Radiation]{1}? Temodar{2}? Lomustine{3} 30 + 0.04
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4.1. Quantitative analysis

In Table 2, we report the performance of various models in
which both ‘single node’ and ‘combination node’ approaches were
used to construct treatment patterns which were used with differ-
ent mixes of clinical and genomic features. C-statistic and accuracy
from both logistic regression and cox regression methods have
been reported. Among the single domain models the best perfor-
mance is obtained when only the genomic features are considered.
Inclusion of more features increases the prediction accuracy as
well as the c-statistic (see Table 2). Among the multiple domain
models, the best performance is achieved when features from all
three domains are analyzed together. The average precision and
sensitivity of the Logistic Regression and Cox Regression methods
are also reported in the table for the individual and multiple
domain models. Table 3 shows the predictive clinical and genomic
features which were selected in at least 30% of the folds generated
during the cross validation step along with the influence they have
in prolonging overall survival beyond 1 year. The predictive treat-
ment patterns shown in Table 4 contain treatment events, which
consist of the drug/radiation type with the event identifier in curly
brackets categorized by the approach used to form sequences. The
bracketed number in the treatment patterns indicates the order
number in the event sequence in which the drugs were prescribed.
E.g. Temozolomide{2}? Lomustine{3} indicates that Temozolo-
mide prescribed as the second drug followed by Lomustine as
the third drug in a treatment plan is statistically significant and
is predictive of survival.

4.2. Qualitative analysis

Besides accurate prediction results, the predictive features are
also clinically meaningful. Methylation of the MGMT gene has been
reported to be crucial for some of the standard of care chemother-
apeutics such as Temozolomoide (Temodar) to be effective which
in turn prolongs survival [9,23]. GBM patients having an unmethy-
lated promoter region of the MGMT gene are less likely to survive
for more than a year. In addition, a higher expression of the TP53
gene is associated with shorter survival periods, while higher
expression of the GABRA1 gene, also called the gamma-
aminobutyric acid (GABA) A receptor, alpha 1, is associated with
longer survival periods. In the clinical domain, younger patients,
in the age group of 25–50 years, have a higher chance of surviving
longer. Another factor is the Karnofsky performance score which is
a score ranging from 0 to 100, assigned by clinicians to GBM
patients based on their functional status prior to treatment
(see supplement for score description) [18]. Patients with a higher
score are healthier than the ones with a lower score. Patients
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having a score greater than 70 were observed to have survived for
longer than a year. Another predictive clinical factor is
neo-adjuvant treatment which is given as the first step to shrink
the tumor before the main treatment is begun. Patients receiving
neo-adjuvant treatment were found to survive for longer periods.
(Neo adjuvant drugs include PolyLCLC, Mivobulin isethionate,
Oxaliplatin, O6-Benzylguanine and Carmustine).

Most importantly, our study also discovered treatment
patterns, which have had both positive and negative effects on
the survival period. The standard first line of treatment consists
of surgery followed by fractionated External Beam Radiation
Therapy (EBRT) with concurrent and adjuvant Temozolomide
therapy. This combination is associated with the best survival in
GBM patients and is the standard of care. Fractionated radiation
is given solely for some patients if they cannot tolerate chemother-
apy. We have also found that treatment consisting of EBRT or the
chemotherapeutic Lomustine, as the second event in the treatment
timeline present individually or in combination with another drug
reduces the likelihood of longer survival. This can be explained by
patients having unresectable tumors. As a result, prescribing EBRT
may not be effective and does not lead to greater overall survival.
Lomustine prescribed as the second drug in the treatment is also
unusual since most clinicians prescribe the standard of care Temo-
zolomide treatment and Lomustine is not prescribed early. Two
treatment patterns using single node approach were found to have
a positive influence on the survival period, one consisting of
Procarbazine prescribed second in the treatment plan in combina-
tion with other drugs or by itself followed by termination of treat-
ment and the second one consisting of Temozolomide prescribed
second in the treatment plan immediately followed by Lomustine.

Using the combination node approach, we found that if Temo-
zolomide is prescribed individually as the first event followed by
Temozolomide with concurrent EBRT then there is a negative effect
on survival. We believe this could be due to the explanation given
before about patients not having a resectable tumor or it is also
possible that if radiation therapy is not coupled with Temodar as
the first event, which is the standard of care, then the treatment
does not turn out to be effective. The other predictive treatment
pattern, which we have found to have a positive effect on survival,
is Temozolomide with concurrent radiation therapy followed by
Temozolomide prescribed individually which is in turn followed
by a prescription of Lomustine as the third event.
5. Conclusion

In this paper, we discuss a pipeline performing data standard-
ization, mining sequential treatment patterns, and constructing
features of predicting GBM patients surviving for longer periods
(greater than 12 months). Novel sequential mining approach is
proposed to capture clinically meaningful patterns by adding
exact-order and overlap constraints. Accurate prediction
(0.85 c-statistic) can be obtained with logistic regression model
using combination of clinical, genomic and treatment pattern
features. Many predictive features can also offer interesting clinical
insights. This study is a preliminary step in providing extensive
treatment guidance to oncologists and neurosurgeons about the
efficacy of certain sequence of drugs and therapies as part of a
treatment plan. Currently the study is focused and driven by care
provided in the area of cancer treatment. In the future we would
like to explore the possibility of extending the current approach
for chronic conditions such as diabetes and hope to find interesting
patterns in patient trajectories since the volume of data would be
large as opposed to acute conditions like Glioblastoma. Currently,
the treatment patterns consist of the drug names and their event
of prescription. We are developing a treatment advisor tool to
recommend treatments for a patient based on treatments given
to patients having a similar clinical and genomic profile using the
knowledge of treatment patterns obtained from this study. We also
plan to add more constraints in the model such as a ‘gap’
constraint, which would limit the temporal gap between events
for inclusion in a sequence. We believe this would help in filtering
out clinically insignificant treatment patterns.
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