
PaToH Matlab Interface∗

Bora Uçar
Centre National de la Recherche Scientifique,
Laboratoire de l’Informatique du Parallélisme,

(UMR CNRS-ENS Lyon-INRIA-UCBL),
Université de Lyon,

46, allée d’Italie, ENS Lyon, F-69364, Lyon, France
bora.ucar@ens-lyon.fr

Ümit V. Çatalyürek
Department of Biomedical Informatics

The Ohio State University
Columbus, OH 43210

umit@gatech.edu

Cevdet Aykanat
Computer Engineering Department

Bilkent University
Ankara, 06533 Turkey

aykanat@cs.bilkent.edu.tr

June, 2009

For additional information and documents on PaToH
http://cc.gatech.edu/~umit/software.html

∗This work is partially supported by the National Science Foundation Grants CNS-0643969, CCF-0342615, CNS-
0403342, the Department of Energy’s Office of Science through the CSCAPES SciDAC Institute DE-FC02-06ER25775,
and “Agence Nationale de la Recherche” through SOLSTICE project ANR-06-CIS6-010.

http://cc.gatech.edu/~umit/software.html

Contents

0 The fast-track 1

1 Introduction 1

2 The contents of the distribution 3

3 The interface 4

4 Utility Functions 5

5 Examples 9

6 License 11

I

0 The fast-track

If you put PaToH.h and libpatoh.a (these files are in PaToH C-library distribution) in the directory
containing the files of the Matlab distribution, issuing the following commands in a Matlab prompt
would get you going.

mex PaToH.c -lpatoh -L. -I. -lm

help PaToHMatrixPart

On a 64-bit machine add -largeArrayDims to mex compilation.

1 Introduction

The aim of the PaToH Matrix Partitioning Interface is to provide sparse matrix partitioning routines
in Matlab. The partitioning routines are based on hypergraph models [1, 3, 4, 5] and use PaToH
hypergraph partitioning tool [2] within a mex function. Apart from the mex function routine that
builds a hypergraph and calls PaToH, everything else is based on matrices and vectors. Therefore,
we refer the reader to the papers cited above for the details of the hypergraph models and the
algorithms to partition the hypergraphs. We refer the reader to [6] for a sample use of this interface
for developing partitioning algorithms. This document covers only matrix partitioning routines and
some other utility functions concerning matrix partitioning.

The most common use of hypergraph partitioning-based sparse matrix partitions is to efficiently
parallelize sparse matrix-vector multiply (SpMxV) operation y← Ax. Here, A is a sparse matrix,
x is the input-vector and y is the output-vector of the multiply operation (it is understood that
the vectors are of appropriate sizes). As is clear, a parallelization of this computation requires
partitioning of the input- and output-vectors as well. Symmetric vector partitioning (for short
symmetric partitioning) refers to the case in which the input- and output-vectors have the same
partitions. In a similar vein, unsymmetric vector partitioning refers to the case in which the input-
and output-vectors have different partitions. The parallelization is achieved by partitioning the
matrix, and the input and output-vectors among K processors. That is, a processor holds a set
of nonzeros of the matrix, a portion of the input-vector x, and is set to be responsible for holding
a portion of the output-vector y. In this setting the parallel matrix-vector multiply operation
y ← Ax proceeds as follows (we are essentially rewriting the exposure in [7]; for a more detailed
account see [5]):

1. Each processor sends xj to those processors that have a nonzero in column j of A.

2. Each processor Pk computes the scalar products aijxj with each aij it owns and computes a

partial result y
(k)
i by adding the results of the scalar products for each i.

3. Each processor sends its partial results y
(k)
i to the processor which is responsible for computing

the resulting yi.

4. Each processor adds the contributions received for the vector entries yi it is responsible for,

i.e., it forms yi =
∑

k y
(k)
i .

1

The communication operations that take place before the scalar products are referred to here
as expand operations, and the communication operations that take place after the scalar products
are referred to here as fold operations. The expand phase and the fold phase, respectively, refer to
the assembly of the expand and fold operations. Notice that in a one dimensional (1D) partitioning
of the matrix A, there can be either expand operations (rowwise partitioning) or fold operations
(columnwise partitioning). In the expand phase, all x-vector entries to be sent by a given processor
to the same destination processor are packed and sent in a single message. A similar packing is
performed in the fold phase. A few definitions regarding the communication operations are in order.

totVolE(k): the total volume of the expand messages sent by the processor Pk.

totNumE(k): the total number of the expand messages sent by the processor Pk.

totVolF(k): the total volume of the fold messages sent by the processor Pk.

totNumF(k): the total number of the fold messages sent by the processor Pk.

totVolE: the total sum of the sizes of messages sent in the expand phase, i.e., totVolE =
∑

k totVolE(k).

totVolF: the total sum of the sizes of messages sent in the fold phase, i.e., totVolF =
∑

k totVolF(k).

totNumE: the total number of messages sent in the expand phase, i.e., totNumE =
∑

k totNumE(k).

totNumF: the total number of messages sent in the fold phase, i.e., totNumF =
∑

k totNumF(k).

maxVolE: the maximum volume of messages sent by a processor in the expand phase, i.e.,
maxVolE = maxk totVolE(k).

maxVolF: the maximum volume of messages sent by a processor in the fold phase, i.e., maxVolF =
maxk totVolF(k).

The computational load of a processor is defined as the number of scalar products it performs,
i.e., the number of nonzero entries aij it holds. Therefore, the load imbalance can be defined as

maxk |A(k)| − |A|/K
|A|/K

, (1)

where |A(k)| denotes the number of nonzeros owned by processor Pk, and |A| denotes the number
of nonzeros in matrix A. Notice that the equation (1) measures how far the maximum load is from
the average load. It is a number between 0 (all processors have the same number of nonzeros) and
K − 1 (a single processor holds all of the nonzeros). We will refer to this ratio as higher imbalance
ratio, as opposed to lower imbalance ratio:

mink |A(k)| − |A|/K
|A|/K

. (2)

Notice that the lower imbalance ratio varies between −1 (there is a processor which does not have
any nonzeros) and 0 (all processors have the same number of nonzeros). These two metrics can
also play a role in comparing two partitions.

2

2 The contents of the distribution

The distribution should contain the files specified below

PaToHMatrixPart.m: The main function that is used to partition matrices.

PaToHSpy.m: A utility function to visualize partitions on matrices.

PaToHComputeImbal.m: A utility function to compute the load imbalance among processors.

PaToHComputeVolume.m: A utility function to compute the total volume of messages and the max-
imum volume of messages sent by a processor.

PaToHComputeNumber.m: A utility function to compute the total number of messages and the
maximum number of messages sent by a processor.

PaToH.c: A mex file, which calls PaToH. It can be used in developing new matrix partitioning
algorithms.

PaToH.m: A dummy function which contains the help text for PaToH.c.

PaToHNaiveVectorPart.m: A utility function to partition the input- and output-vectors of the
sparse matrix-vector multiply operation with a given partitioned matrix.

The main function provided in C-file PaToH.c should be compiled with mex (easier in a Matlab
prompt) using the following command

mex PaToH.c -lpatoh -L<PATH-TO-LIBPATOH.A> -I<PATH-TO-PATOH.H> -lm

by replacing “<PATH-TO-LIBPATOH.A>” to the directory that holds libpatoh.a and “<PATH-TO-PATOH.H>”
to the directory that holds patoh.h. These two files are parts of the PaToH distribution which can
be downloaded from http://cc.gatech.edu/~umit/software.html. If you have a 64-bit instal-
lation of Matlab, you should use 64-bit distribution of PaToH and add -largeArrayDims to the
mex compilation command.

3

http://cc.gatech.edu/~umit/software.html

3 The interface

The main function in the interface is in the file PaToHMatrixPart.m.

function [nnzpv,outpv,inpv,ptime] = PaToHMatrixPart(mat, K, dim,

partitioner, imbal_in)

Description:
Partitions the matrix mat into K parts.

Parameters:
mat required a sparse matrix.
K required the number of parts. Should be at least 1.
dim required A string describing the partitioning method. Should be one of

• ‘RWS’: Rowwise symmetric partitioning

• ‘RWU’: Rowwise unsymmetric partitioning

• ‘CWS’: Columnwise symmetric partitioning

• ‘CWU’: Columnwise unsymmetric partitioning

• ‘FGS’: Fine-grain symmetric partitioning

• ‘FGU’: Fine-grain unsymmetric partitioning

• ‘JLS’: Jagged-like symmetric partitioning

• ‘JLU’: Jagged-like unsymmetric partitioning

• ‘CHS’: Checkerboard symmetric partitioning

• ‘CHU’: Checkerboard unsymmetric partitioning

partitioner optional should be one of

• 0: hypergraph-based partitioning with PaToH (default
value).

• 1: random

• 2: Block-row balanced

• 3: Block-nonzero balanced

• 4: Round-robin

imbal in optional permitted higher imbalance ratio (1). Default is 3%.
nnzpv return the part vector on nonzero basis. This is a sparse matrix, with the

same sparsity of the input matrix mat.
outpv return the part vector of the output vector of SpMxV with mat

inpv return the part vector of the input vector of SpMxV with mat.
ptime return the partitioning time in seconds, measure the time spent in PaToH.

We note that not all partitioners are implemented for all possible dim for the time being.
The default partitioner is PaToH for which all partitioning alternatives are implemented. The

4

outputs outpv and inpv are dense vectors, describing the partition on the output- and input-vectors
of the SpMxV operation, and nnzpv is a sparse matrix of the same sparsity pattern as the matrix
mat and describes the partition of the nonzeros of the input matrix. The part numbers are integers
from 1 to K.

4 Utility Functions

One of the most useful utility functions is PaToHSpy that visualizes the partitioned matrix.

function PaToHSpy(nnzpv, outpv, inpv, K, symb, ttl, printperm)

function PaToHSpy(nnzpv, symb)

Description:
Plots the given partitioned sparse matrix. Each part is displayed with a different color (and symbol
if symb = ’?’). If input and output partitioning vectors are given, matrix is permuted to reflect
vector partitioning, under the assumption that each input or output vector element is assigned to
a processor which owns at least one nonzero in the respective column or row. After permutation,
the i-th block of input and output vector elements are owned by processor i.

Parameters:
nnzpv required the part vector on nonzero basis. This is a sparse matrix, each

nonzero entry has an integer value between 1 and K.
outpv optional the part vector of the output vector of SpMxV with a sparse matrix

whose partition is provided in nnzpv.
inpv optional the part vector of the input vector of SpMxV with a sparse matrix

whose partition is provided in nnzpv.
K optional the number of parts, computed as max(full(max(nnzpv))) in case

it is not given.
symb optional marker symbol. If it is ’?’, a different marker is used for each part.
ttl optional title for the plot.
printperm optional if 1, permuted row/column indices are displayed. We only recom-

mend the use of this option for small matrices.

5

function [imbalanceLower, imbalanceUpper] = PaToHComputeImbal(nnzpv, K)

Description:
Calculates the imbalance ratios shown in (1) and (2).

Parameters:
nnzpv required the part vector on nonzero basis. This is a sparse matrix, each

nonzero entry has an integer value between 1 and K

K optional the number of parts, computed as max(full(max(nnzpv))) in case
it is not given.

imbalanceLower return Imbalance ratio shown in (2). In case second output argument is
missing, imbalance ratio of (1).

imbalanceUpper return Imbalance ratio shown in (1).

[totvolE,maxvolE, totvolF, maxvolF] = PaToHComputeVolume(nnzpv, outpv, inpv, K)

Description:
Calculates the total and the maximum communication volume both for fold and expand operations.

Parameters:
nnzpv required the part vector on nonzero basis. This is a sparse matrix, each

nonzero entry has an integer value between 1 and K.
outpv required the part vector of the output vector of SpMxV with a sparse matrix

whose partition is provided in nnzpv.
inpv required the part vector of the input vector of SpMxV with a sparse matrix

whose partition is provided in in nnzpv.
K optional the number of parts, computed as max(full(max(nnzpv))) in case

it is not given.
totvolE return the total communication volume of expand operations. If the other

output arguments are not present, then represents the total com-
munication volume of expand and fold operations.

maxvolE return the maximum volume of expand messages sent by a single proces-
sor.

totvolF return the total communication volume of fold operations.
maxvolF return the maximum volume of fold messages sent by a single processor.

6

[totnumE,maxnumE, totnumF, maxnumF] = PaToHComputeNumber(nnzpv, outpv, inpv, K)

Description:
Calculates the total and the maximum number of messages both for fold and expand operations.

Parameters:
outpv required the part vector of the output vector of SpMxV with a sparse matrix

whose partition is provided in nnzpv

inpv required the part vector of the input vector of SpMxV with a sparse matrix
whose partition is provided in in nnzpv

nnzpv required part vector on nonzero basis. This is a sparse matrix, each nonzero
entry has an integer value between 1 and K

K optional the number of parts, computed as max(full(max(nnzpv))) in case
it is not given.

totnumE return the total number of expand operations. If the other output argu-
ments are not present, then represents the total number of expand
and fold operations.

maxnumE return the maximum number of expand messages sent by a single proces-
sor.

totnumF return the total number of fold operations
maxnumF return the maximum number of fold messages sent by a single processor.

function [outpv, inpv] = PaToHNaiveVectorPart(nnzpv, isSym, K)

Description:
Computes vector partitions for the SpMxV operation with a matrix whose nonzeros are partitioned
according to nnzpv

Parameters:
nnzpv required the part vector on nonzero basis. This is a sparse matrix, each

nonzero entry has an integer value between 1 and K

isSym required if isSym=0 a nonsymmetric vector partitioning is returned; else a
symmetric one is returned.

K optional the number of parts, computed as max(full(max(nnzpv))) in case
it is not given.

outpv return the part vector of the output vector of SpMxV with a sparse matrix
whose partition is provided in nnzpv

inpv return the part vector of the input vector of SpMxV with a sparse matrix
whose partition is provided in in nnzpv

The function provided in PaToH.m is a dummy function and called only if the mex file for PaToH.c
was not built. It also contains the documentation for PaToH interface provided in PaToH.c. Hence,

7

the following description applies to the main function PaToH.c as well (this functions transfers
Matlab structures into PaToH’s hypergraph data structures, calls PaToH, and transfers partitioning
information into Matlab structures).

function [partv, ptime] = PaToH(hyp, K, nconst, cw, nw, imbal, cuttype)

Description:
Partitions the hypergraph hyp into K parts. The vertices of hyp have nconst many weights which
are stored in cw. The nets have costs which are stored in nw. The partition should meet a balance
criterion of imbal. The objective function to minimize is described by the string cuttype.

Parameters:
hyp required a hypergraph given as a sparse matrix. The rows of the matrix

represent the vertices of the hypergraph, and the columns of the
matrix represent the nets of the hypergraph. The matrix entry at
position (i, j) is nonzero if and only if vertex i is in net j.

K required the number of parts
nconst optional the number of constraints. Default is 1

cw optional the cell weights. cw((i-1)*nconst+1) to
cw((i-1)*nconst+nconst-1) contains the weights of the
cell i. Here i≥ 1. Default weights are 1.

nw optional the net costs. The net j has cost nw(j). Here j≥ 1. Default costs
are 1.

imbal optional permitted higher imbalance ratio (1). Default is 3%.
cuttype optional With the option ‘CON’ , the hypergraph partitioning objective

function is the sum of the connectivity-1 values of the nets. With
the option ‘CUT’, the same function is the sum of the costs of the
cut nets. Default is ‘CON’.

partv return the partition vector for the vertices of the hypergraph hyp. The
values are between 0 and K-1 (not to be confused with the other
part vectors used in the matrix partitioning interface).

ptime return the partitioning time in seconds, measures the time spent in Pa-
ToH.

8

5 Examples

Assuming the mex file for PaToH was built, we start by loading a matrix (west0479 is available in
Matlab) and having a look at its plot

load west0479

spy(west0479)

Then, we partition the matrix among 4 processors using different partitioning methods:

[nnzpvcwu, outpvcwu, inpvcwu] = PaToHMatrixPart(west0479, 4, ’CWU’);

[nnzpvfgu, outpvfgu, inpvfgu] = PaToHMatrixPart(west0479, 4, ’FGU’);

[nnzpvjlu, outpvjlu, inpvjlu] = PaToHMatrixPart(west0479, 4, ’JLU’);

[nnzpvchu, outpvchu, inpvchu] = PaToHMatrixPart(west0479, 4, ’CHU’);

Then, we visualize the different partitions

PaToHSpy(nnzpvcwu, outpvcwu, inpvcwu, 4, ’.’, ’Columnwise partitioning’);

PaToHSpy(nnzpvfgu, outpvfgu, inpvfgu, 4, ’.’, ’Fine-grain partitioning’);

PaToHSpy(nnzpvjlu, outpvjlu, inpvjlu, 4, ’.’, ’Jagged-like partitioning’);

PaToHSpy(nnzpvchu, outpvchu, inpvchu, 4, ’.’, ’Checkerboard partitioning’);

The plots are seen in Fig. 1. We see that the total volume of communication in CWU is 78, in
FGU it is 72, in JLU it is 81, and in CHU it is 89. We also see the lower and upper imbalance
ratios in the figures. Please note that since PaToH uses random seeds, it is likely that the resulting
partitions will differ at each run on the same input set.

We are wondering what happens when we request a symmetric vector partitioning

[nnzpvcws, outpvcws, inpvcws] = PaToHMatrixPart(west0479, 4, ’CWS’);

[nnzpvfgs, outpvfgs, inpvfgs] = PaToHMatrixPart(west0479, 4, ’FGS’);

[nnzpvjls, outpvjls, inpvjls] = PaToHMatrixPart(west0479, 4, ’JLS’);

[nnzpvchs, outpvchs, inpvchs] = PaToHMatrixPart(west0479, 4, ’CHS’);

and compare the total volume of messages with respect to the unsymmetric vector partitioning
case using the commands below.

totvolcws = PaToHComputeVolume(nnzpvcws, outpvcws, inpvcws, 4)

totvolcws =

261

totvolfgs = PaToHComputeVolume(nnzpvfgs, outpvfgs, inpvfgs, 4)

totvolfgs =

238

9

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

Columnwise partitioning

nnz = 1887
vol = 78 imbal = [−1.2%, 1.3%]

(a) Columnwise, unsymmetric partitioning

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

Fine−grain partitioning

nnz = 1887
vol = 72 imbal = [−0.2%, 0.1%]

(b) Fine-grain, unsymmetric partitioning

0 100 200 300 400

0

50

100

150

200

250

300

350

400

450

Jagged−like partitioning

nnz = 1887
vol = 81 imbal = [−1.6%, 1.5%]

(c) Jagged-like, unsymmetric partitioning

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

Checkerboard partitioning

nnz = 1887
vol = 89 imbal = [−1.4%, 2.0%]

(d) Checkerboard, unsymmetric partitioning

Figure 1: Visualizing different partitioning methods on the matrix west0479.

10

totvoljls = PaToHComputeVolume(nnzpvjls, outpvjls, inpvjls, 4)

totvoljls =

240

totvolchs = PaToHComputeVolume(nnzpvchs, outpvchs, inpvchs, 4)

totvolchs =

259

Not much of a surprise, in this case we have a lot more total communication volume.

6 License

PaToH Matlab Interface is released under the GNU Lesser General Public License. A copy of the
license is included in this distribution in COPYING.LESSER file.

References

[1] Ü. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning based decomposition for parallel
sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems,
10(7):673–693, 1999.

[2] Ü. V. Çatalyürek and C. Aykanat. PaToH: A Multilevel Hypergraph Partitioning Tool, Version
3.0. Bilkent University, Department of Computer Engineering, Ankara, 06533 Turkey. PaToH
is available at http://cc.gatech.edu/~umit/software.html, 1999.

[3] Ü. V. Çatalyürek and C. Aykanat. A fine-grain hypergraph model for 2D decomposition of sparse
matrices. In Proceedings of 15th International Parallel and Distributed Processing Symposium
(IPDPS), San Francisco, CA, April 2001.

[4] Ü. V. Çatalyürek and C. Aykanat. A hypergraph-partitioning approach for coarse-grain decom-
position. In ACM/IEEE SC2001, Denver, CO, November 2001.

[5] Ü. V. Çatalyürek, C. Aykanat, and B. Uçar. On two-dimensional sparse matrix partitioning:
Models, methods, and a recipe. SIAM Journal on Scientific Computing, 32(2):656–683, 2010.

[6] B. Uçar, Ü. V. Çatalyürek, and C. Aykanat. A matrix partitioning interface to PaToH in
Matlab. Parallel Computing, 36(5-6):254–272, 2010.

[7] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method for parallel
sparse matrix-vector multiplication. SIAM Review, 47(1):67–95, 2005.

11

http://cc.gatech.edu/~umit/software.html

	The fast-track
	Introduction
	The contents of the distribution
	The interface
	Utility Functions
	Examples
	License

